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1.0 STM4ARY

An accurate and rapid method is presented for solution of the general

equations of compressible, steadyp laminar-boundary-layer flow. The method

allows arbitrary conditions on all of the following: pressure gradientj sur-

face temperature and its gradient, heat transfer, mass transfer, and fluid

properties. Also, the method can calculate the second-order effect of trans-

verse curvature. The only restrictions on the method are that the body be

axially symmetric or two-dimensional and that no dissociation of the fluid

occurs.

The equations that are solved are developed from the Navier-Stokes and

energy equations by an order-of-magnitude analysis. They differ from the con-

ventional boundary-layer equations of Prandtl only in that the second-order

terms that include transverse curvature are retained.

The method of solution consists of replacing the partial derivatives

with respect to the flow direction by finite differences, while retaining the

derivatives in a direction normal to the boundary, so that the partial differen-

tial equations become approximated by ordinary differential equations. Reasons

for choosing this method rather than the more conventional finite-difference

methods are discussed.

Arbitrary fluid properties may be used in the method of solution, that is,

they are inputs in the computer program in the form of formulas or tables as

functions of local enthalpy and pressure. Results obtained with the method

using exact fluid properties for air are compared with those using simpler

fluid-property laws. These simpler laws, which often have been used in the

past in boundary-layer investigations, ere shown often to give poor predic-

tions of heat transfer and skin friction at high speeds.

The method has been programmed on the IBM 7090 computer, and solutions

for a wide variety of flows are presented. Comparisons are made with other

exact and approximate methods of solutions. The flows include cases of heat

transfer, mass transfer, and discontiuities in the boundary conditions over

a large range in Mach number (Mach 0.0 to 10.0). Some comparison with ex-
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perimental measurement is also made. Also a study of the effect of trans-

verse curvature on the flow over cones is presented. The large number of

calculations and comparisons establish that the method is rapid, highly

accurate, and powerful. It appears capable of solving any flow problem for

which the boundary-layer equations themselves remain valid.
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4.o PTI3NCipAL NOTATION

a local velocity of sound

a1 , a2 , .

bl, b2 , constants defined where applicable

c1, c 2 ,*

BI, B21 o.. constant coefficients defined where applicable

CI, C2,

c chord length

cf local skin-friction coefficient, eq.(6.114)

cf skin-friction parameter, eq. (6.116)

Cp specific heat at constant pressure

c _

f nondimensional stream function, defined by eq.(6.7)

F body force

g nondimensional total enthalpy ratio = H/He

h local enthalpy

href reference enthalpy used in fluid property relation from

Ref. 7, = 2.119 x 108 ft2/sec2

2H total enthalpy =h + iu

i count of successive tries in procedure for solving momentum

equation (Appendix B)

unit vector, eq.(A-5)

k thermal conductivity

K bound in computer program on values of pt

L count of successive solutions of the energy equation and

fluid properties in the procedure of solution

m the exponent in the free stream velocity variation, U = c I xm
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M Mach number

n count of the number of steps in the x-direction

N P + R

p pressure
p x due

u dx
e

Pr Prandtl number

q heat transfer

Q. count of successive solutions of the momentum equation

in the procedure of solution

r radial distance from axis of revolution

ro  radius of body of revolution

rf recovery factor, defined by eq.(7.10)

x drR
r dx X

Re Reynolds number = e

St Stanton number, defined by eq.(6.120)

T transverse curvature term defined by Eq.(6.32) except in

Sections 7.3 and 7.4 where it is absolute temperature

uu x ~component of veloci.ty, -=

e
v y component of velocity

V vector velocity, eq.(A-5)

x distance along body surface measured from stagnation point

X axial or chordwise distance

body force in x-direction

y distance normal to x

Y nondimensional normal distance, eq.(6 .106)

Y body force in y-direction
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aangle between normal to the surface y and the radius r

Hartree's measure of free-stream velocity distrioution in

similar flow, 0 = m +---

7 ratio of specific heats, Cp/Cv

B thickness of boundary layer

5 displacement thickness

a dimensionless displacement thickness, eq. (6.103)

a specified accuracy in program

itransformed y coordinate, eq.(6.4)

reither a very large 7j, that is, orutside the boundary layer

or I at the edge of the boundary layer, i.e., = e

B momentum thickness

0 dimensionless momentum thickness, eq.(6.Ui0)

dynamic viscosity

V kinematic viscosity

I variable of integration, or in Section 7.9, a transverse

curvature parameter

'function in energy equation defined by eq.(6.5O)

p density

Tshear stress

(transformed stream function = f - YI, see eq.(6.36 )

*in Section 6.1, a stream function defined by eqs.( 6 .5 and 6.7);

in all other Sections, the enthalpy function g - 1, eq.(6.45)

SUBSCRIPTS

ad evaluated at adiabatic wall

o evaluated at outer edge of boundary layer
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n evaluated at station n

rec evaluated at recovery temperature, Tree - Tad

ref evaluated ar reference enthalpy

stag evaluated at stagnation point

t evaluated at total temperature

w evaluated at wall

00 evaluated at a reference condition, or see

o usually means evaluated at initial condition, x = 0.

One exception is r0

Primes denote differentiation with respect to 71. fl, etc.
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5.0 INTRODUCTION

The present work was started because there were many problems of laminar

boundary-layer flow for which no satisfactory solutions had been found.

Among them were questions on high-speed heat transfer and the effects of heat

transfer and wall mass transfer on drag. Answers to these questions require

an exact L!eneral method for solving the boundary-layer equations. Available

methods for solving the boundary-layer equations appeared inadequate. Integral

methods can treat general flows, but they give only approximate solutions.

Similar-flow methods are accurate but are restricted to special pressure dis-

tributions. When the work was started, finite-difference methods appeared to

require unreasonably long computing times for accuracy. Therefore, studies

were made to develop a practical method for solving "exactly" the complete

equations of compressible boundary-layer flow in two-dimensions. The sense

of ''exactly'' as used here is that the solution approaches the exact as the

step length in the calculation procedure approaches zero. The objective of

the studies was to find a method capable of obtaining solutions for arbitrary

values of (1) pressure distribution. (2) wall mass-transfer distribution,

(3) gas properties, and (4) wall temperature distribution. The only re-

striction on the flow was that it be two-dimensional or axially sym.etric.

The problem was approached by first finding a method that gave an ac-

curate solution for the general incompressible boundary-layer equation.

An accurate and rapid method was developed and is presented in References 1,

2, and 3. The method is a modification of the Hartree-Womersley technique.

It consists of replacing the partial derivatives with respect to the flow

direction by finite differences, while re Laining the derivatives in a direction

normal to the boundary, so that the partial aifferential equation becomes

approximated by an ordinary differential equation. The method was programed

on an electronic computer, and solutions for a wide variety of flows were

calculated and are presented in References 1 and 2. The large number of cal-

culations and their comparison with other exact and approximate zolutions

establish that the method is rapid, highly accurate, and powerful. It is

capable of solving any flow problem for which the incompressible boundary-

layer equations themselves are valid. The mathematics of the solution, that
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is, the behavior of the process of solutions the nature of solutions its

difficultiesp etc., are reported in Reference 3. Also, the reasons for

choosing the present method rather than the more conventional finite-difference

methods are discussed.

After the method of solution had proved successful for incompressible

flow it was extended and modified to solve the fully general laminar boundary-

layer equations for compressible flow. The only restrictions are that the

flow be two-dimensional or axially symmetric and that no dissociation occur

The purpose of this report is to describe this method for solving the

compressible flow equations and establish it validity. Section 6.0 develops

the equations, by starting with the Navier-Stokes equations. The second-order

effect of transverse curvature is retained. Steps in the procedure for solving

the equations are described, and the reasons for choosing them over other

possibilities are discussed. Section 7.0 consists of the results of calcula-

tions of a wile variety of flows. They establish the accuracy of the method.

Wherever possible comparisons of the calculations are made with other methods

and with experiment.
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6.0 DESCRIPTION OF MlHOD OF SOLUIION

6.1 Boundary-Layer Equations

The problem to be considered is axisymmetric, steady,equilibrium flow

about a body of revolution. The equations necessary to describe such a flow

are those of continuity, momentumi, and energy. Also the equation of state

and relations describing the fluid properties such as viscosity and specific

heat are required.

The problem will be restricted to high Reynolds number, so that the Navier-

Stokes and energy equations are simplified to essentially the form of the

boundary-layer equations as originally developed by Prandtl in 1904. The

second-order effect of transverse curvature that was neglected by Prandtl will

be considered here. Van Dyke considered all second-order effects identified

as: transverse curvature, longitudinal curvature, slip, temperature jump,

entropy gradient, stagnation enthalpy gradient and displacement in a recent

article for the special case of a blunt body (Reference 4). As pointed out

by Van Dyke, logically, all second-order effects should be considered con-

currently, but consideration of all these effects is beyond the scope of the

present work. The effect of transverse curvature is included because of its

importance in predicting boundary-layer growth on long slender bodies, such

as certain missiles.

The basic notation and scheme of coordinates are shown in figure l,where

u is a reference velocity and ue(x) is the velocity of the main flow just

outside the boundary layer. The term He  represents the total enthalpy out-

side the boundary layer and is constant. Local enthalpy outside the boundary

layer he is given from the relation

12 12H h +1 u 2 = h + 1 U
He = he +2 e T

The coordinates are a curvilinear system in which x is distance along the

surface measured from the stagnation point. The dimension y is measured

normal to the surface. Within the boundary layer the velocity components are

u and v, being, respectively, in the x and y directions. The body radius

is roe
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Figure 1.- Boundary layer on a body of revolution. Coordinate system.

The basic steady-flow equations for a laminar boundary layer in the above

coordinate system are developed in Appendix A. They are, including the trans-

verse- curvature terms:

CONTINUITY

_[_ (r Pu) + (r P v)] 0 (6.1)rTy

MOMENTLM

P u + v 6u --- + 6 u+ 6 6 (6.2)

ENERGY
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Equations (6.2) and (6.3) differ from the forms usually obtained when the
Prandtl boundary-layer approximations are madebecause they contain the trans-

verse curvature terms:

Rr in (6.2)

and
a n aH +  u [( l) u in (6.3)

6.2 Transformed Boundary-Layer Equations

Whereas the above equations could perhaps be solved by the method to be
presented, they will be transformed to a more convenient coordinate system.
Flttgge-Lotz and Blottner have solved the above equations essentially as they
are written, though simplified relations for the fluid properties-viscosity

and Prandtl number-were used (Reference 6). The equations as written have
several disadvantages; for example, they may be singular at x = 0, and the
boundary-layer thickness varies greatly with distance.

These difficulties can be overcome by stretching of the coordinate
normal to the wall y. The transformation that has proven most effective

for accomplishing the stretching is that of Howarth-Dorodnitsyn, where

y

H fp dy

0

=x

It is felt that a second requirement of the transformation of the y-coordinate
be that it should reduce to the incompressible transformation that was studied
extensively by the authors in References 1, 2, and 3. Therefore, consider the

transformation

Ue y
S= - fp dy

0 (6.4)
X1X
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Also, it in convenient to describe a stream function * such that

r u--n }(6.5)

pr v--

Furthermore, as was done in incompressible flow, it is convenient to introduce

a dimensionless stream function f such that

f . , u(6.6)

The relation between f and * is

* I .-. x ue  f (6.7)

In order to transform the boundary-layer equations above to x, - coordi-

nates, the following relations are used:

a Ue 1 (6.9)

the stream function.

The momentum equation (6.2) becones the following in the transformed

plane:
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i i (C r fit) + P (- f,2) + FP +1 + R ffi

x- " - = 0 (6.10)

where:

primes denote differentiation with respect to Tj

P L

c -a--- (6.11)
Pe 'Le

C -. P (6.12)CO Pe 4~e

du*

-x de = Pressure gradient parameter (6.13)
u dx

e

x drR-- - = Radius parameter (6.14)
r d~x

For equation (6.10) the boundary conditions are:

= 0 : f'(0) = f = 0 W (6.15)

f (0) =fw

If the wall is impermeable, fw= 0; but with flow through the surface

(p r v) w = -

Then x

(*r)w =- p( ) vw (t) rw(j) di
0

In the incompressible reports (References 1, 2, and 3) M was used for the
pressure gradient parameter but it is changed here to prevent any confusion
with Mach number.
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P"a U,

SA r dx (6.16)fw up IwXVP--P, xus rw#x %e ' f w' g

0

Note that vw  positive corresponds to blowing; negative to suction. The

outer boundary conditions are

- oo: f' 1-

f '--.0

A few of the more important properties of eq.(6 .10) are noted. If the

edge velocity is of the form ue = clx , (x/ue)(due/dx) is identically P. If

r=clx , R = (x/r)(dr/dx). If P and R are constants it can be shown that

the equation is independent of x and provides the so-called similar solutions.

Equation (6.10) has several advantages over other possible forms. Other

forms are singular at x = 0 and require that an initial profile be specified,

usually some distance from the leading edge; but in (6.10) the term containing

the x-derivatives disappears at the start of the flow, and the solution can

be started with a similar flow. Finally, the equation reduces to the incom-

pressible form which was studied extensively in References 1, 2, and 3. Thus,

not only does form (6.10) have the advantages that are discussed in these

references for incompressible flow, but also the large number of flows studied

there may be used as a check on the present method.

To transform the energy equation (6.3) to the x, I -plane, first define

the enthalpy ratio g
H (6.17)

e

and let

-g (6.18)

Then (6.3) becomes
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2

CO f e J[P1 +R g' + x C(f1 9(.9

2--I  g,+ f f

In the solution of (6.19) either the wall temperature or the heat trans-

fer at the wall, corresponding, respectively, to gw and will be specified.

The outer boundary condition is

g(rl -- * 1 as n -0 00 (6.20)

6.3 Fluid Properties

Fluid properties that appear in the momentun and energy equations are

density p, viscosity p, and Prandtl number Pr. These equations were de-

veloped to be valid so long as the fluid is in equilibrium, that is, the fluid

properties are functions only of local conditions - pressure and enthalpy.

Previous investigators have usually used simplified laws for these properties,

such as, a power lw or Sutherland's law for viscosity and a constant value

of the Prandtl number. Whereas it is known that these laws do not accurately

represent the properties over the entire flight regime of interest, the effect

of these inaccuracies on the solution of the boundary-layer equations has never
been investigated. The present method of solution has been developed so that

arbitrary fluid properties may be used. That is, they are iuputs in the

program in the form of formulas or tables as functions of local enthalpy and

pressure. There is no restriction on the fluid to be considered, that is,

the flow may be in either airj helium, water, or some other medium. All that

is required is that the fluid be in equilibrium and its properties be specified

in the proper form.

All of the flows to be presented in this report are for air without dis-

sociation. Relations for fluid properties that will be used have been chosen
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from Reference 7. Reasons for this choice are: (1) The relations correlate

well with the known properties of air throughout the sensible flight regime,

up to velocities of 29,000 ft/sec and an altitude of 250,000 ft. (2) The

relations are presented as functions of local enthalpy and pressure, whereas

most other reports present the properties as function of temperature and

pressure. (3) The reference also considers equilibrium dissociating air and

the relations presented are compatible when either dissociation or no dis-

sociation occurs. Whereas the present report is restricted to nondissociating

gases, it is planned to extend the method presented here to dissociating gases

in equilibrium. Thus the relations of reference 7 would be consistent for

such an extension to flow in air.

Cohen (Reference 7) presents formulas for density and the product of

density and viscosity and a table of Prandtl numbers all as functions of a

local enthalpy ratio h/href and static pressure p. He chose href to be

about the average value of total enthalpy encountered in the sensible flight

regime

h = 2..19 x 108 2 /sec2 (6.21)
hrefft/e

The enthalpy ratio can be obtained from the functions of f and g of the

momentum and energy equations from the relations:

2
H h + + (6.22)

h H 1 U2

href href 2 href
2 2

H u 2 u2_e f12 Ue 0
9 -T -- - -(6.23)

ref 7 ref

2 2 2
Note that H/href and u:/href are constants for the flow, ue/u is a

function of x only, and g and f' are functions of both and x.

Cohen's formulas for the variation of density with enthalpy in the

boundary layer (recall that there is no pressure change in the boundary layer)

can be written as

21



Pe (h/href)0"6123 - 00455283 (6.24)
P (he/href)O" 23- 0.0455283

With regard to the accuracy of (6.24.),Cohen states "the function fits the

data reasonably well over the range 0.0152 S h/href ' 2.01, for pressures

in the range 10-4 to 10 atmospheres. "The maximnm deviation in this range

is about t 25 percent at low enthalpy and the average deviation for all data

is about t 5 percent. Agreement is best in the range 0.2 < h/href < 1.6",.

Viscosity appears in the boundary-layer equations as the product of

viscosity and density. This product is a function of enthalpy only across
the boundary layer , and its ratio C according to Reference 7 is

p I, (h/h f)3329 - 0.020856
C =- = (6.25)

Pete (h/h ref)0 33 9 - 0.020856

The variation of C outside the boundary layer is also required and is given

by

PII .(he/href)
0 3329 - 0.020856 p) 0.992

ee (h/hf)' 29 - 0.0256 \-e (6.26)

where
2

h H u
00 e

h 2heref ref ref

With regard to the accuracy with which (6.25) and (6.26) agree with data,

Cohen states:" Maximum deviation is about t 8 percent and the average de-
viation in the entire range 0.0152 " h/href S 2.0 is about t 3 percent."

For flows where h/href is less than 0.015, a linear viscosity law is used

and the density is taken as inversely proportional to local enthalpy.

Reference 7 presents the variation of Prandtl number with enthalpy in

table form (Table 1, page 26 of Ref.7). Whereas it is possible to use this
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table as an input in the computer program for solving the boundary-layer

equations, a simpler and more accurate method is to fit relations to the

tabular values. It has been found that the following three least-square

relations fit the tabular values with an error of less than 0.22 percent

over the range of data.

For 0.005 S h/href 9 0.075,
6

Pr = 0.77 an(- re - 0 . 00 5 )n (6.27a)
'1 nref

where

a, = - 6.18253 a4 = - 642822.0

a2=- 147.-9245 a = + 8 .00559 x 106

a3 = + 21609.81 a6 =- 3.66200 x lO7

For 0.075 - h/href ' 0.30,
6

Pr = 0.7374 +I bn(h/href -o.075) n  (6.27b)

where

bI = + 2.009 b4 =- 3319.69

b2 =- 45.112 b5 = + 10613.04

b 3 = + 524.907 b6 = - 13410.82

For 0.50 h/href S 2.0,

3
Pr = 0.755 Cn(h/href _-0.30) n  (6.27c)

where

cI = - 0.1299

c2 = + 0.05757

c3 = + 0.00133
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Figure 2.- Variation of Prandtl number with enthalpy. Cohen's data of Reference 7 and fitted curve.
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These relations and the tabular values from Reference 7 are plotted in figure 2.

At very low enthalpies, it is seen that the Prandtl number, both Cohen's data
and the fitted curves, increases rapidly as enthalpy decreases. It is believed
that Prandtl number should have a value of 0.72 at the lower enthalpies.
Therefore, if h/href < 0.015# this value is used in the program.

Boundary layer in flows of fluids other tian air or in air with other
fluid-property laws can be handled by replacing the relations of this section

by ones appropriate to the flow being studied.

6.4 Choice of Procedure for Solution of Boundary-Layer Equations

The method of sol,,ion will be similar to that used in the study of the
incompressible boune _ayer (References 2 and 3). The x-derivatives in the

momentum and energy equations are replaced by finite differencesso that the

partial differential equations are approximated by ordinary differential
equations. Then the problem of solution is essentially to find the unknown

boundary conditions at the wall that satisfy the known outer boundary con-
ditions. This is done by a cut-and-try procedure, which is described in

Sections 6.5 and 6.6. The momentum equation (6.10) and the energy equation
(6.19) are interdependent and must be solved simultaneously.

Several procedures for solving the equations simultaneously are possible.

Three are:

I. Starting with assumed boundary conditions at the wall, solve the

two equations simultaneously with the appropriate fluid properties.

A cut-and-try procedure would be used on the wall values until the

outer boundary conditions are satisfied.
II. To get started, assume an enthalpy distribution (and thus the fluid

properties) and calculate the momentum equation. Again a cut-and-

try procedure would be required. Values of the stream function f

and the velocity f' from the first solution of the momentum equa-

tion would be used in the solution of the energy equation and the

fluid properties. The new fluid properties would be used again to

solve the momentum equation. This iterative procedure would be con-

tinued until convergence of the solution is obtained. A diagram of

25



the procedure is sketched below.

IAssume Fluid il Momentum

operties onuation

Energy Equation |Momnentum
With Correct Eq Fuation

Fluid Properties

Energy Equation

With Correct p.Iterative procedure continued
Fluid Properties until convergence of all cal-

culated quantities is obtained

III. Again,to get started, the fluid properties are assumed to get a

firs solution of the monentum equation. The energy equation is

then calculated, but by using the assumed fluid properties. By

use of this assumption, the energy equation is linear, and thus

its solution is considerably simplified. Then the calculated

enthalpies are used to determine new fluid properties ,which are

used to solve anew the energy equation. Once convergence of the

fluid properties is obtained, the momentum equation is solved a

second time. This double-iteration procedure is continued until

convergence of both the momentum and energy equations is obtained.

The procedure is diagramed on the next page.

Studies indicate that the solution will be simpler and probably more accurate

if derivatives of the fluid properties, such as aC/a, a(pe/p)/, etc., do

not have to be evaluated in the solution. This forces the use of Procedure

III above, for consider the energy equation (6.19)
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III.* PROCNEUE FOR SOLVIG EUATIONS SIMULTANEDUSLY

Solprttioio

ofFluid Energy
Moenum Properties Euation

Equationt
Iterative procedure is con-
tinued until calculated va-
lues of enthalpies converge.

Solution eEaterntlcaclae
fPrprte vuE ai oetmuton

Momentumw convrge
EquationoL

Tokefrosn values /in onm sleuto
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Thus the left-hand side of (6.28) can be determined, but the values of C and

Pr depend on g. which must be determined by integrating g'. An iterative

procedure could be used to determine the value of C, Pr and g', but this can

be avoided by using Procedure III.

Detailed steps in the procedure of solution are given in Section 6.9

and Appendix B.

6.5 Method of Solution of Momentum Equation

Before attempting its solution, equation (6.10) will be rewritten for

simplification. Firstconsider the first term in (6.10)

1 1 (C r f"

The radius r is a function of both x and n, being defined by

r = ro + y cos a = r° + cos a [ f :. d] (6.29)

where r is the local radius of the axisymetric body

a is the angle between the normal to the surface and the radius r

(see Fig. Al).

It would be difficult to handle the integral in (6.29) within the differential

in equation (6.10). Therefore rewrite the first term of (6.10) as

1 l 6 (Cr f") =f1 6 (Cf,) + C. fIl 'cr (6.30)
_r F 71-C U

The second term on the right-hand side is the transverse-curvature term and is

negligible when the boundary-layer thickness is small compared to the body radi-

us. Thus there is a second advantage to writing the first term of (6.10) in two

partsin that the transverse-curvature term stands by itself. For further

simplification introduce T, a transverse curvature parameter, defined such

that
I r T2Pe
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Substitution of the value of r given in (6.29) gives

1r T Pe cos _ _ 1
P + y cosa ue P

Cos a PW (6.31)
r0 __Iu • iP WU ' P PD

o e (+ p00  Cs-;-VT N- Td)coso =
000

Now T may be written as

cos a p

T = Co a PO(6.32)

x u '" ( P
00 9W00 0

For simplicity, introduce T which is a function of x onlyU

TV = T(n=0) ~ cos .(632)
ro0Jue P.U:X' Pe

Then (6.32) can be written as

Tw
T w (6.32b)

0

Effects of transverse curvature for particular flows are presented in Section 7.9.

The radius parameter R may be written as

x dr x [dro dos 00 a6,
RaFE= ro+Y Cos a+I dx (633)

Now if the boundary layer is small with respect to the body radius, as is

usually assumed in boundry-layer flow, R is simply
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dr
R X 0 (633a)

But if it is not, the y terms in (6.33) may affect the solution of the

momentum equation. The last term in (6.33) is

dro dcosa - dr 0 in da
-- +Y = dx ysn

--ro [1- d

since sin a = dro/dx. But da/dx is the reciprocal of the local longitudinal

radius of curvature, and this radius must be large with respect to y if

the boundary-layer approximation used in developing the momentum and energy

equations is to hold. That is, if the local radius of curvature is small

with respect to y, the second-order effect of longitudinal curvature becomes

of importance, and the approximation of no pressure change across the boundary

layer is no longer true. Therefore y(da/dx) < < 1 and (6.33) may be written

as

x dro x dro
R xd~r r0 IF - WE d

rdx l+ YCos cos

0 e 0

x dro
r. ? U (6.33b)

1 + Pe dn
iTrf -d

Also for simplicity the symbol N is introduced, defined as

N P + +R (6.34)
2

The momentum equation can now be written
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6 (C f ) =-T -C f"-CP( -f1 2 )-C Nff"+C x ft fU

(6.35)

It will be solved in the same manner as the incompressible equation was in

References 2 and 3. Values of the fluid properties C and Pe/p, which of

course were not needed in the incompressible problem, are assumed here to be

given by the most recent solution of the energy equation. For the very first

solution they are assumed.

In the authors' studies of the incompressible boundary layer it was found

that round-off errors in the computer program could be reduced by substitution

of ' = f' - 1 into the momentum equation (Reference 3). The sane substitu-

tion will be made here. The reason that round-off errors are reduced by the

substitution is that in equation (6.35) all terms approach zero as 71 ap-

proaches oo; both pe/p and f2 approach unity and the round-off error

is primarily introduced when taking their difference. The substitution is
9 =f-i 1

'' = f ' (6.36)

P,,,t = f1,,

Introduction into (6.35) gives

6 C, 911) T eCctI+ C C,2 +1 p L

P,, -- , + 2P+ l---

-C N(T + j)99" + C,0x [(q) I+ 1) cpl ] (6.37)

The boundary conditions are now:

=0:

' - 1 (6.38a)

T"= unknown, to be solved for

31



- -F - (PV -- -~J-r

Figure 3.- Notation system for velocity and enthalpy profiles in the boundary layer on a body of revolution.
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p' --. 0

(6.38b)

The region of solution will be divided into x-wise stations as shown in

figure 3. At each station the x-derivatives will be replaced by finite

differences. The finite-difference representation is described in Section

6.7. This replacement of the partial derivative with respect to x by finite

differences results in an ordinary differential equation at each x-station for

the momentum equation. Each equation must be solved step by step as the cal-

culation proceeds in the x-direction. The equation is third order and non-

linear. Solution of the equation is made difficult by both the nonlinearity

and the fact that one boundary is at n = oo. Ample work in the past has

proved the existence of a solution; therefore it is sufficient to search for

the correct solution. A positive method for doing this is to solve (6.37) as

an initial value problem using arbitrary values of 9" as a third boundary

condition. It is then necessary to search through the possible values of Tw'

to find the one that satisfies the outer boundary condition - that g' ap-

proaches zero asymptotically as I approaches infinity. The procedure for

performing the search is described below but first consider the solution of

tne equation as an initial value problem. First determine

T1

C go" =fr (C (P") dj + Cw cpw (6.39)

0

where (C g") is given by the right hand side of (6.37). C is known or

assumed but cP' is not. It will be found by the searching procedure described

in the following paragraph. The method of integration to be used in (6.39) is

described in Section 6.8. Other quantities needed in the solution of (6.39)

are given by

Cc- =(C (6.4o)
C

9' 1 ' d-q-1 (6.41)

0
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di~ + (6.4.2)

0

Briefly, the procedure for searching for the correct value of q'( is to

first try values of P. until the solutions for p' are bounded in a specified
region. Then an interpolation method is used to obtain the value of q'" that

satisfies the outer boundary condition. The steps in the procedure are:

1. Try qp" - (cp")i t, where the latter is an input to the programw w input
or, more conveniently, is the value at the previous station. Compute

outward to determine if the trial solution exceeds P' = 0 or not.

Because of the transformation used, the value of (p' will generallyW

remain between 0 and 4. A value of q1 = 0 corresponds to
V

separation.

2. If qp' exceeds 0, the trial value of 1" is high and a second
V

solution is computed with a reduced qp.1. This procedure is continued
w

until both a high and a low value of q" are known.
V

3. Once both a high and a low value of q' are known, the bounds on the

correct value of @P' can be further narrowed by splitting the

difference between the upper and lower bounds, and computing again.

4. This splitting the difference can be continued until p" for a high
w

solution and c'' for a low solution agree to a specified number of

decimal places. This procedure is positive but costly in computing

time. Studies have shown that the searching procedure can be speeded

up considerably with no loss in accuracy by the following: the split-

ting-the-difference procedure is used until three solutions are ob-

tained such that q' at TLax = % is between the bounds of

-K 9'(%) 9 K. (Both % and K are inputs in the computer

program.) At least one of the three solutions must be high and one

low. A three-point-interpolation procedure is then used to determine

the solution that satisfies the outer boundary condition (P'(%) = 0.

This is the same procedure that was used in the solution of the in-

compressible-boundary-layer equations and reported on in Reference 3.

The interpolation procedure is as follows. Consider the typical set of

trial runs shown in figure 4. The runs are for incompressible stagnation-point
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1.50O/

0.5-

-=1.00

0 1.0 2.0 30 4.0 5.0

Figure 4.- Trial solutions for various values of (P; . Stagnation-point flow, P = 1.0, R = 0.

flow. The tries were:

Try Nature Tries used for q1
interpolation

1st 1.0 Low 2.50

2nd 1.5 High 1.95

3rd 1.25 High 1st 5.0

4th 1.125 Low 3.55
5th 1.1875 LOW 2nd 5.0

6th 1.21875 Low 3rd 5.0

Interpolated 1.232587

The program first tried Ip"= 1.0, which it found to be low. The second try

of 1.5 was high. It then proceeded to split the difference between the last

high and low tries until it had three solutions that extended all the way to
within the bounds of (P'(%) ± 1. These three solutions were the 3rd,
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5thp and 6th trie. Denote than as

lot solution (P (Pl CP{' (C CPt$),I

2nd solution, (2 CP2 (P2 1 C(

3rd solution (P3 P q' (C (P")3

Legrangian three-point interpolation is used to determine the solution which

meets the outer boundary condition 0'( ) = 0. The interpolated solution is

given by

(p (n) = A l(T) + A2 q)2 (n) + A3 C3(n) (6.45)
cP'(T) = A. 91.(q) + A2  q)P(n) + A3  cp (P i)

and a similar relation for cpt,(q) and (C qp")t where the coefficients are

given by

T (I-) ( ¢r,)

A C ) cp3'.(r6) (6.44)

A3 = L(.) - c~j(itQ]Lq(P31r) - '(r60 )]

The solution can be made as accurate as desired by restricting the values

of the bounds K. Effect of K on the accuracy of solution is discussed in

Section 7.2. Typically K would have a value of 1 for five-place accuracy.

Computing time required to obtain this accuracy with the interpolation method

is about one fourth the time required if just splitting the difference between

the high and low tries were used. A study showed the thre.-point form of

interpolation to be considerably more accurate than the two-point form. but

no great gains in accuracy were obtained by using more than three points.
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6.6 Method of Solution of RAergy liuation

Before solving the energy equation (6.19) it is convenient to substitute

the functions T and q introduced in the preceding Section and to also

introduce the function * defined as

*- g-l1 (6.45)

for the same reasons that ( was introduced in the momentum equation. Substi-

tution of the functions in (6.19) gives
2

u2 1 p

= -T( ) * + e c(i - - )(P + 1) P,,

- CN(p + n),, + C x [(, + 1) - ' (6.46)

The wall boundary condition are:

at 11 = 0:

(6.47)

A more general boundary condition could be defined by

a= gw + k e

but usually either gw or S , corresponding respectively to wall tempera-

ture and wall heat transfer, would be known.

The third boundary condition is, as i- oo;

(6.48)

*'--. 0
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The method of solution of (6.46) is similar to that of the momentum

equation. The region of solution is divided into x-wise stations as indicated

in figure 3. Again the x-derivatives are replaced by finite differences ,which

are defined in the next section of this report. When solving (6.46) values

of qp and its derivatives that were determined from the previous solution

of the momentmn equation and fluid properties that were determined from the

previous solution of the energy equation are used. Once a solution has been

obtained the fluid properties are re-evaluated and the energy equation is

solved again. This iterative procedure is continued until convergence of

the solution is obtained. Details of the iterative procedures for solving

both the momentum and energy equations are given in Section 6.9. With these

procedures * and *' are the only unknowns in the solution of (6.46) and

the equation is linear.

The solution of (6.46) is as follows. Rewrite it as

/ a)I+C - * 1= T -a ir - C Ni(cp + + C x (91 + ) .4)

where for siplicity

2
- + e C(. - 1 - )(9, + 1) ,, (6.50)

Pr H Pre

Equation (6.49) is integrated to determine 7w

'w =fw, dj + ,(6.i)

0

The method of integration is the samie as for the momentmiz equation and

is described in Section 6.6. From (6.50)

2
er C - 1 )(P' + 1) U"1 (6.52)= C L HeP

which may be integrated to determine

1, =J*' & + Vw (6.55)
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Since equation (6.49) is treated as linear, its solutions may be linearly

combined. It will be solved twiceand the two solutions combined to meet the
outer boundary condition. The exact procedure will depend on whether g or

is known.

Case 1: gw is known. Both solutions begin with the same value of *w)

the one imposed by the boundary condition

*(o) = *=w -1

First equation (6.49) is solved by using a trial value of =:

The solution is denoted as

*l(T )

If l(q) is greater than zero,a lower value of * is tried; if it
is less, a higher value of *I. The second try is denoted asw

*2(n)
The two solutions can be added to produce the most general solution,
which can be made to meet the boundary conditions. The general solution

is

*(I) = A *(T() + B *2 (TI) (6.54)

The outer boundary conditions are

) A *(nm.) + B 2(n.) 0

(6.55)
v,(O) -.A *j(q) + B *2(q.) 0

and also

But

so that

A+B =
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Squation (6.55) gives

- 2(n,)
A = -(6.56)

and the correct solution is for all I's

*(n) = A *l(n) + (1 - A) *2(1) (6.57a)

and also

*' (TO= A * (n) + (1-A) #p'(T) (6.5Th)

Case 2: g is known.

The procedure is similar to Case 1, but now the energj equation is

solved with two trial values of gw  instead of g . Again, the two

trial solutions are denoted as *l(j) and *2(T1). Relations (6.56),

(6.57a),and (6.57b) then may be used to give the correct solution.

6.7 Finite-Difference Representation of x-Derivatives.

The fundamental idea for the method of solution - that of replacing the

x-derivatives by finite differences to approximate the partial differential

equation by an ordinary differential equation - was advanced by Hartree and

Wamersley (Reference 8). The idea was applied to the incompressible boundary

layer by Hartree (References 9 and 10) and the authors in References 1, 2,

and 3.

Two treatments within the scheme are possible. One is to deal in terms

of the differential equation at a point; in particular, the x-derivatives at
a point are replaced by their finite-difference equivalents. Another treat-

ment is to deal in terms of mean values of the variable q or * for a
region of finite extent. Both methods are described in Reference 3. Within

both of the methods there are many possible representations of a derivative

by finite differences, for example, two, three, or more points may be used.

Note that all of the x-derivatives that appear in the momentum and energy

equations are only of first order.
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In reference 3 the authors made an extensive study of the use of two-

point, three-point, and four-point finite differences in solving the in-

compressible-boundary-layer equations. Both the concept of the point form

and of the mean form were studied. The investigation showed that whereas

the two-point mean representation was more accurate than the two-point point

form, the use of three and four points proved the point forms to be more
accurate. Solutions obtained by the mean method with the higher number of

points diverged wildly as the step length became small. The same type of
divergence appeared in Reference 1 where the two-point mean form was used,

but occurred there at much smaller step sizes in x. The investigation also
showed that whereas the use of three points in the point form of finite

differences gave a much more accurate solution than the use of two points,
further increase of the number of points to four gave no great increase in

accuracy. As a result of the investigation, the three-point point form of
representing the derivatives was chosen in the present method. In addition

to being freer of oscillations as the step size becomes very small, the point

form has the advantages of being simpler conceptually and simpler to program
on the computer.

The basic scheme of the finite-difference representation is diagramed
in figure 5. The space is divided into a number of regions bounded by lines
x n , Xn., Xn. 2 ) Xn. 3 . The spacing A x need not be constant. Because the

momentum equation and energy equation are parabolic in x, the problem must
be solved by proceeding in the direction of positive x. It is assumed that

the solution has been found at all previous stations up to and including
Xn.l, which of course means that cp(TI) and *(T) and their derivatives are

fully known at these stations. The quantity (p'(T) typically has the appear-
ance shown in figure 5. The problem is to find the solution CP(r 1) and *(n)

at the new station xn .

Whereas usually three-point finite differences will be used, at the start

of a solution only two points are available and the two-point form must be
used. Also, when there are discontinuities in the boundary conditions, it may
be more accurate to use the two-point form. The finite difference repre-

sentations are:
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M-3 M-2 n-i

-AX

)(n_, Xn-Z  -I Xn-I  Xn

Figure 5.- Notation system for finite-difference representation of x-derivatives.

For two points:
'on Tn - %-l 6-8
ax xn - xin

The error in this expression is

(x n - x -l) ec_
2

where t is some value of x in the interval x - xn .

For three points:

= (Xn -- iT + (x. n - 2 ) ]jn

(xn - Xn.2 )
-x 'n - xn-.)(Xn-l - Xn-2) 'Pn 'l

+ ( n  -1 )  (6.59)
(xn - x .2)k 1 - Xn-2)

42



A

The error here is

(x, - xn l )(x - x n 2 )

where here g is some value of x in the interval xn - Xn.2.

In solving the boundary-layer equations the quantity aq/ax in both the

momentum equation (6.37) and the energy equation (6.46) is replaced by either

(6.58) or (6.59). The other x-derivatives Zcp'/ax and * /ax are replaced

by similar expressions. When these substitutions are made, it is assumed

that all of the other quantities in the boundary-layer equations are evalu-

ated at xn . The equations are then ordinary differential equations in n

with the variable quantities cp, 91', and * at the n-i and n-2 stations.

Step length Ax is not a primary parameter; instead, x/A x is.

In solving the boundary-layer equations the calculation must start at

x = 0. For the x = 0 station the terms with x-derivives in both the

momentum and energy equations disappear. At the second station the two-point

form of the finite differences is usedbut,at all stations farther downstream

the three-point form may be used. The error in the three-point form is like

3 ax3

as compared to

A x2

for the two-point form. Therefore in order to have the same accuracy in the

solution at all stations the step size at the second station must be suitably

reduced. In practice these errors near the leading edge will probably be

small due to the fact that the flow is nearly similar there, and thus the

x-derivatives are small. But in any case A x can be kept small here, in

order to keep accuracy high.

For further discussion of application of Hartree-Womersley's method for

solution of the boundary-layer equations and the associated errors, see

References 1 and 3.
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6.8 Method of integration

The overall method of solution of both the monentum and energy equations

is outlined in Sections 6.5 and 6.6. The problem of solution is essentially

one of integration. There are several methods for performing the integration

that are available as subroutines on the computer, for example, Milne's

fourth-order predictor-corrector method, but because of their generalitythey

require long computing times to solve the present problem. Therefore the

authors made a study of various techniques that were available for performing

the integration as applied to the incompressible problem. The results of

this study are reported in Reference 3. A method was developed there that

appears to be both highly accurate and rapid. It uses the Falkner extra-

polation formulas and the Adams interpolation formulas which are described

on pages 116-131 of Reference U2. Furthermoreas a result of the study, the

four-point form of these formulas appears most appropriate for the present

problem.

First consider the general situation where the solution is known up to

r and the problem is to find the values of g and * and their derivatives

at ir + " I = nr+l by use of equations (6.39 to 6.42) and equations (6.49,
6.51 and 6.53). A special procedure will be required to get started near the

wall, and it is described in succeeding paragraphs. Considering first the

momentum equation, the integration indicated in equations (6.39, 6.41, 6.42)

will be approximated by the extrapolation and interpolation formulas. First

the extrapolation formulas use values of (C q ")' and g" at the r, r-l,

r-2, r-3 stations to determine values of g, c', c"i and (C 911)' at the

r+l station. The formulas are

(C ,, )r+) (C 9" )r + *2 5 5(C g" )r - 59(C " r-

+ 37(C 9" )- - 9(c g")r._ (6.60)

where the subscript E is used to denote extrapolation. The step length an

is a constant in the solution. The error in (6.6o) is

S + 720 (_ ) (C g (1V
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The extrapolation formulas for 4P' and (P are:

I~r+l z Tr + (5 4r 9 r l 3 (r#-# 9 (Pr613

with an error of

and2

(6.62)

with an error of

The value of (C c") at r+l can now be determined by using the momentun

equation (6.37) and the extrapolated values of 4i", ', and q). It will be

denoted by

(C (P,)r+) E = F1 (q,, , q 3)r+i

The interpolation formulas can now be used to determine more exact values of

(P"p qI', q) and (C q9") at the r+l station. The formulas are

(C q) 1  a (C P)r + 4q10994 ) 19c (P ( p )-

with an error of +( P)-](.3

and

+ (P+q)r.q (6.64)

with an error of

and
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~~r ~ ~ Ia 38 9 +'18~ + 171 CP" 3~6 ep + ~ 7 r21

(6.65)
with an error or

Finally the value o.V (C cp'') is obtained by again using the basic momentumr+l
equation (6.37) and the interpolated values above

(C cp'') = F1 (cp'', cp', c)

A comparison of the error terms for the extrapolated and interpolated values

shows that not only are the interpolation errors much less than the extra-

polation, they are also opposite in sign. Therefore the exact value of the

quantity in question, say 9', must lie in the bounds of the extrapolated

and interpolated values. Thus there is a check on the accuracy of the pro-

cedure. This method of checking is the concept used in all predictor-cor-

rector methods of numerical analysis (for exa.ole, Milne's methods described

in Reference 12, pages 199-202). The method developed here, using the Falkner

and Adams formulas, was chosen over the more established predictor-corrector

methods because its use of higher derivatives gives much smaller errors. It

is particularly well suited to solving high-order ordinary differential

equations. The-solution can be made as exact as desired by choosing a small

enough step size Arj.

The use of both the extrapolation and interpolation formulas does

essentially mean that the integration over each step length is being per-

formed twice. In the interest of saving computing time, a study was made to

see if use of only the extrapolation formulas would give accurate solutions.

In some flows it was found that the extrapolation gave oscillating values of

ep" and Cp' at the outer edge of the boundary layer. These oscillations

disappeared when both the extrapolation and interpolation formulas were used.
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The formulas for performing the integrations required in solution of the

energy equation are similar to the above. They are:

for equation (6.51)

l) r + [55 rr - 59 + 9 r-3  (6.66)

for equation (6.53)

a * . [+ 9 + - (6.67)

and froa equation (6.49)

r,+l) , "72(rV' *Z)r+l

The interpolated values are given by

S = 1T+ ~ (9 +) + 19 r' - 5r' + 1 (6.68)

r+l *r + -21 9 *'+l + 19 *'r - 5 *'-1 + *'-2 (6.69)

and finally fron equation (6.49)

'-+l = F2(r', *)r+l

The Starting Procedure.

The extrapolation-interpolation formulas abovc require values of the

variables at four previous T stations. To get started at the wall Taylor's

series will be used. Consider the Taylor's series for C qp"

(C q,,) = (C q),,) + W(C (,,): + C ( ',)( '+

The use of high-order terms in the expansion would require values of the

derivatives of C at the wall, for example, the use of the third term re-

quires the value of
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(C V I,)"- (c"(P"f) + 2(C''"), + (C (V)w

Derivatives of C are not known from the method of solution, and it would

be difficult to obtain their values accurately. Therefore only two terms

will be used in the Taylor's series expansion. Error studies show that if

the some accuracy is to be maintained in the expansion as in the extrapola-

tion - interpolation formulas above, much shorter steps in 'i are required

in the Taylor's series. The study shows that for about five-place accuracy

in the values of (p and *,, a step size of Aij d 0.1 is sufficient in

the extrapolation - interpolation formulas but that the Taylor's series

expansion requires a step length of about 0.008. The accuracy can be held

by using the Taylor's series to obtain the values at only I = a from

the wall. Here A'1 is used to denote the step size used in the four-point

extrapolation - interpolation formulas above. Values are then built up to

the full length step A by using two-point and three-point extrapolation

formulas. Accuracy requires a step size of nn/4 for the two-point form,

and a step size of ai/2 for the three-point form. The steps in the pro-

cedure are outlined in Table I and are sketched in figure 6. The equations

to be used are:

TAYLOR, SIES - STEP SIZE An/16

(c '")b,/l6 - (C l")w + -1 (C cps)" (6.70)

PI +(6.71)

9h1/16 = (6.72)l

" ,r + (6.72)

+8(6.74)
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Two-PoIn FmULAS - STEP SIZE an/16

=/1 + an [3( qpl/6 - (C ($1) (6.765

(pt , , /16 + 3 [ q ")6 ['P. o (6T6

-r )(6.78)

*AR/ = *n/16+ -1 [3*1,/6 -(6.79)

TWO-MOINT FOPRLAS - STEP SIZE Aq/8

(C (P),/ = (C 4"),M/8 + -1 [3(C '~) I8 - (C ") 3(6.80)
(f ~ 3 q4 4s48+% g8-(. (6.81)

+ (P,;4/8 + ): [/8 - (6. 8]
=tq/ -(6.&),M/4; + o '6/8 r , -,, (6.83)

-(6.84)
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Two-POINT FamuLs - STEP SIZE b/i

(c gp")r+l (c 91)+ [3(C P"); - (C (P"):-] (6.85)

r" + [3 9 I- Pr 1 (6.88)9r+1 lror rl

7+ Ub 3 - r'_ ] (6.88)

TaU-pOIT FODUJLAS - STEP SIZE Aq/2

(c "~~ (c 4?")r + 24 [23(C p") 16(C 4"' ):- + 5(c vt 1)-2]

- (6.90)

9or + 4r + L)qL[19 4pl -10 Pr 1+ 3 Tr 1 (6.92)

+ -21[23 ie- 16 w~~j+ 5 .02] (6-93i)
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6.9 Outline of Procedure for Solving Mmentum and Nwrgy Squations
Siultaneously

The procedure for solving the momentum and energy equations is briefly des-

cribed in Section 6.4, and the reason for its choice is discussed there. Details

of the procedure are given in this section. Consider the general case when the

program is solving the equation at the n-station. Values of c and * and their

derivatives at all previous stations will be known. First the momentum equation

is solved using the fluid properties from the n-1 station. The values of 's

from this solution are used to solve the energy equations but still using the

fluid properties from the n-i station. Then new fluid properties are determined

and an iterative procedure followed until convergence of solutions of both the

momentum and energy equations is obtained. In the iterative procedure let (4 = i

(an integer) indicate one solution of the momentum equation with the accompanying

solutions for enthalpy and fluid properties. The procedure is:

(a) The momentum equation is solved by using the fluid properties from

the n-i station. It is solved by the cut-and-try and interpolating

procedure described in Section 6.5. The solution is denoted as To.

(b) The energy equation is solved by using the po value and the n-i

fluid properties. The solution is denoted as (*o)L-OS where L is

a count of successive solutions of the energy equation and fluid

properties at a given Q.

(c) The solution (*o)L=O is used to determine new fluid properties.

They are denoted as (FPo)L=O.

(d) The fluid properties (FPo)L=0 and the solution go are used to

obtain a second solution to the energy equation (*o)L-l and new

fluid properties (P% L-l
(e) This iterative procedure is continued until L - L-MAX. Proceed

to -= 1.

(a) The momentum equation is solved a second time by using fluid proper-

ties (po)L.MA X and the solution is denoted as 91.

(b) steps (b) through (e) in Q = 0 are repeated to obtain (*I)L.MAX •
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> 1

(a) The procedure in Q = 1 is repeated, using always the latest values

of (p), (*), and (FP) until either

or
(P)w - (CP' < 6w ' w )Q-2.

where a is an accuracy input. If either of these conditions

is satisfied, the program proceeds to the next station.

The procedure is sketched in figure 7) and further details of the

computer program are given in Appendix B.

6.10 Starting the Solution

At x = 0 the x-dependent terms disappear in both the momentum and

energy equations. The equations reduce to:

C c -L T C I'' + C ( '2 + 2 V + 1 -- -- C N(P + )m''

(6.95)

for momentum and

u
2*, + eC(l - P +,, 1) ,,

2

Pe C_ #j +-e C(l- )(9' + 1) C" I-C N(9 + n) ' (6.96)

for energy. Hence values of q and * at previous stations are not required.

The x-dependent terms also disappear for similar flows. Such flows occur when

P) R and the wall boundary conditions are constants for all x's. They in-

clude those with constant pressure, such as flows about a flat plate and

wedges. Similar llows are discussed more completely in Chapter 8 of Hayes

and Probstein, Reference 13.
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The procedure of solution requires that the momentum equation be solved

first, but to do so requires values of the fluid properties. At a downstream

station the properties are approximated for the first solution of the momentum

equation by assuming then to be the sane as those at the previous station. To

get started at the x = 0 station, a linear enthalpy profile that satisfies

the inner and outer boundary conditions for enthalpy is assumed. The fluid

properties obtained fran this enthalpy profile are then used to start the

solution. After the first solution of the momentum equation at any station

is found, the fluid properties obtained from the latest solution of the energy

equation are used for subsequent solutions of the momentum equation. The

iterative procedure is presented in the preceding section of this report.

Values of P and R

The values of P and R are either inputs in the program or are cal-

culated from the velocity distribution ue versus x, and the radius distri-

bution r0  versus x. They are defined by

=(u ~)n

n r r n

x d

1 + T P ~

Both Pn and (ro/x)(dro/dx) are always inputs at x = 0, but may be calculated

at aft stations by use of Lagrangian derivative formulae

d' n = An -l u + A u + An+ u (6.97)
nien.i n e n+J eCn+ 1

and n
= A, 1 r +An r + An+, r (6.98)

°n-1  On °n+I

where
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xn - n+i
A - n - x(ni Xn -7
A l Xn-i - xnAXn-l - i

2Ax -x+l - x-l (6.9)

A x =n (n n +

6.11 Boundary-Layer Parameters

Once the profiles of ( and * and their derivatives have been de-

termined at an x-station, the program determines the conventional boundary-

layer parameters of displacement thickness, momentum thickness, local skin

friction and local heat transfer. First the profiles of (), *, and their

derivatives are transformed to the more conventional profiles of the stream

function f, the velocity ratio f', enthalpy ratio g, etc.

The displacement thickness is calculated from the well known formula

8 =f (l - ) dy (6.100)

In the true definition of a displacement thicknessequation (6.100) is exact

only for two-dimensional flow. For axially symmetric flow the exact dis-

placement thickness is given by the quadratic equation

8"(l+ - cos a) (1 + -Z- cos a)(1 - dy (6.101)2r 0 x)=rl+ 0 csael Q L d
0

Because of difficulties in solving (6.101), the simpler expression (6.100) is

used to calculate displacement thickness for all flows. Transforming to the

x, n coordinates, (6.100) is
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U

e 0 PeUe P

= ./" -' P.o ( P a
V p P ee

U - ra-f'  (6.lo2)

-VUGOP--- Ue Pe0

0*

The program calculates a dimensionless displacement thickness A which is

defined by

* U 8* U Pi_
-ii" u -PL (-e -fl) dji (6.103)

When comparing solutions with real flows the dimension i is not con-

venient, because of the transformation between it and the true physical height

y. Therefore the program calculates y from 7.

: e (6.4)

0

or

= f ' dn (6.lo4)

Define a dimensionless Y as

y = Yc (6.105)

c

Then f-d

0 (6.lo6)

=3F Pe
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Introduction of Y in (6.103) gives

-- U u a fl  (6.1o7)

The momentum thickness is given by

o- f u( u y (6.lo8)
0 Pe Ue ue

or in x, n coordinates by

U 0  f_ f l f ) d q (6 .1 0 )
ow~u -e Pe 0f

The program calculates a dimensionless momentumn thickness defined as

PW -' v. - (6.1o0

or

uW P- z f,) dn (6.13.)
P0

The shear stress at the wall is

w V ww (6.112)

or in x, q coordinates

SV . P f (6.u13)

Introduction of the local skin-friction coefficient defined as
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cf w 2 (6.114)

gives

cfU=2 (u)3/2Pw ft (6.115)

A conventional shear parameter is

c c_ = 2( ) /fi (6.116)

The heat transfer at the wall is

Now
.1 = (3_ -- (u r (6.3.8)

w~ = 
W[

since uw  = 0. Heat transfer in x, coordinates is given by

- e w1 - He (6.119)

The Stanton number., a heat transfer parameter, is defined as

= Ue 9ww 1(6.12o)

UpU H - H) 1
P.. e w pwx u p r 8

The ratio of Stanton number to skin friction is given by

St U
o2 u (6.121)

w e w

* The Stanton number is most often written in terms of Hrec -H rather

than He - Hwj but this is not convenient in the present method.
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7.0 CHARACTER OF SOLUTION AS LIARN FROM TRIAL RUNS

The principal purpose of this section is to establish the accuracy and

character of the method of solution. It will be done by presenting a large

number of flow cases that include large ranges in pressure gradient, heat

transfer, transverse curvature effects, and different fluid-property laws.

Whenever possible, comparisons are made with exact solutions or with experi-

ment. Also, in some cases comparisons are made with approximate methods of

other investigators. Section 7.1 discusses the accuracy for similar flows.

Since these are almost the only flows for which exact solutions are available,

they are used to study the effect of the various inputs in the computer pro-

-gram on the accuracy of the calculations in Section 7.2.. Section 7.3 compares

the present method of solution with that of Chapman and Rubesin for the special

case of a flat plate with variable wall temperature. Effect of the various

fluid-property laws on recovery factor is determined in Section 7.4. Section

7.5 compares the present method with the finite-difference method of Fltfgge-

Lotz and Blottner. The present method is compared with experimental results

for the special case of a circular cylinder in Section 7.6. An example of

internal flow, the boundary layer inside a nozzle, is presented in Section 7.7.
Boundary layers on a reentry-type body are presented in 7.8 showing the effect

of altitude, body temperature, and the fluid-property laws on the solutions.

Transverse curvature effects are studied in 7.9. Finally, in Section 7.10,
discontinuities in body temperature and mass transfer are studied. This study

is applicable to some types of ablation cooling.

The first - and an obvious - check of the program was simple incompressible
flow. For such flow the equations reduce to the form presented in References

1 and 2, where the authors developed the present method of solution for in-

compressible flow. Many of the cases presented in References 1 and 2 were

recalculated by the present method. Results were identical to the earlier

ones and will not be repeated here. Since the energy equation is negligible

and fluid properties are constants for incompressible flow, these cases afforded
a check on only ihat portion of the program that solves the momentum equation.
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7.1 Similar Flow

Since almost the only flows for which highly accurate solution are known

are the similar flows calculated by Cohen and Reshotko (Reference 14), these

were first used to check the programing of the equations. Similar flow occurs

when the solution is a function of q only, that is, when f and g and their

derivatives are independent of x. In their method Cohen and Reshotko used

Stewartson's transformation to transform the compressible equation to an in-

compressible form. Specifically. the transformations are:

x

Pe ae d. (7.1)
PI T aTx

y= ae P

a' fd (7.2)

0

a u (7.3)
ae

where here X, Y, and U are the transformed quantities, the subscript T

refers to free-stream stagnation valuesp a is the velocity of sound, and

X is a constant in a linear viscosity-temperature relation. The transformations

are restricted to the case where viscosity varies linearly with temperature and

for Prandtl number 1.0. The same assumptions are used in the present method when

comparing its results with those of Cohen and Reshotko. Similar flow occurs

when
U = c (7.4)
e

Cohen and Reshotko present their results for specific values of the pressure

gradient parameter P, which is related to m by

m+ 1

Results of the present method are compared with those of Cohen and Reshotko

in Table II for various values of m and g. In the present method the calcu-

lation can be compared directly with Cohen and Reshotko's results by letting
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ue =U e =cl x
m  (7.6)

That is, essentially low speed flow is assumed, but density does vary with

enthalpy
Pe h

P e

The parameter P is identically equal to m for such flows. Results of the

two methods differ by only 2 in the fourth decimal place for favorable

pressure gradients. Cohen and Reshotko presented four significant figures in

their results. In the present method the various inputs that affect the accuracy

of the results were selected so that the calculations converged to five signifi-

cant figures. These inputs are discussed in the next section. The agreement

between the two methods is not so good near separation, that is, near f' = 0.w

In the worst case, the difference is 2 in the second decimal place in f".W

The present method becomes very sensitive near separation (f" < 0.08) and itsw
difficulties in obtaining a solution here are discussed in detail in References

2 and 3 for the case of incompressible flow. The values of f and f'w

presented in Table II for P = 20 and 0 = 2.0 should not agree exactly. A

value of 0 = 2.0 corresponds to a value of P = co, and it is of course im-

possible to calculate such a flow by the present method. A value of P = 20

was used to convert the values of f" and presented in Reference 14 forw
= 2.0 to the values presented in Table II. As P becomes very large the

results of the present method approach those of Cohen and Reshotko for 0 = 2.0.

For the case of favorable pressure gradients with heated walls, that is,

the wall temperature greater than recovery temperature, the velocity within

a portion of the boundary layer can exceed the local external velocity. This is

known as velocity overshoot. An example is shown in figure 8, where P = 1/3,

gw = hw/He = 2.0, and Me = 3.0. Both enthalpy and velocity profiles are shown.

The assumptions for fluid properties are the same as those used by Cohen and

Reshotko; Pr = 1.0 and a viscosity proportional to temperature. By means of

the Stewartson transformation the flow reduces exactly to that presented in

Refel-ence 1L for the transfon.aed incompressible flow with P = 1/3 end = 2.0.
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TABLE II

COMPARISON OF SHEAR PARAMETER AND HEAT-TRANSFER PARAMETER CALCULATED

BY PRESET METHOD WITH THOSE CALCULATED BY COHEN AND RESHOTKO

w
P 9w Cohen and Present Cohen and Present

Reshotko Method Reshotko Method

1.0 1.0 1.0 1.2326 1.23259 0 0
1.0 1.0 2.0 1.7368 1.73671 -o.6154 -0.61533

0.50 0.35553 0.0 0.4741 o.47413 O.4040 o.40399
0.50 0.33333 0.2 O.5346 0.53477 0.3290 0.32922
0.50 0.33333 0.6 o.6489 o.64907 0.1706 0.17068
0.50 0.33333 1.0 0.7575 0.75745 0 0
0.50 0.33333 2.0 1.0085 1.00863 -o.4674 -o.46745

0.0 0.0 0.0 0.3321 0.332057 0.5321 0.332057
0.0 0.0 0.2 0.3321 0.332057 0.2657 0.265676
0.0 O.0 o.6 0.3321 0.332057 0.1328 0.132838
0.0 0.0 1.0 0.3321 0.332057 0.0 0.0
0.0 0.0 2.0 0.3321 0.332057 -0.3321 -0.332057

-0.10 -0.04762 2.0 0.1246 0.12478 -0.2783 -0.27826
-0.160 -0.07407 1.O 0.1296 0.12809 0.0 0.0
-0.1988 -0.09041 1.O 0.0 0.02405 0.0 0.0
-0.200 -0.09091 o.6 o.1472 0.14747 0.1096 0.10873
-0.240 -0.10714 o.6 0.0711 0.08172 O.0985 O.10304
-0.300 -0.13044 o.0 O.2098 0.21213 O.2810 o.28392
-0.300 -0.13044 0.2 0.1376 0.13843 0.2080 0.21079
-0.325 -0.13979 0.2 0.0888 0.09720 0.1910 o.19981

2.0 20.0 0.0 2.3917 2.33313 1.6860 1.62839
2.0 20.0 0.2 2.0719 3.01625 1.4034 1.38057
2.0 20.0 o.6 4.3191 4.23688 0.7466 0.74326
2.0 20.0 1.0 5.4666 5.34950 0 0
2.0 20.0 2.0 8.o615 7.89056 -2.1429 -2.12336

Since = 2.0 corresponds to P = a, the two methods can not agree
exactly.
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7.2 Effect of the Various Inputs on the Accuracy of the Solution

Since exact answers are available for similar flows, these flows have

been used to study the accuracy of± the computer program. Quantities that

are inputs and that affect the accuracy of the computer results are Al, ,

K, L, c, Ax, mad the trial values of either g or gw"

The step length in il affects the accuracy of the calculation because

of truncation errors in the integration formulas. Effect of the step length

on the calculation of fw' is shown in Table III. Its effect on g is

similar. In fact the error in f' is typical of the maximum error thatw
occurs in all quantities calculated, including the enthalpy profiles. In the

table and in the results that follow, the various inputs that affect the

accuracy have the following values, unless otherwise specified: nTI = 0.05,

r6 = 9.0, K = 0.50, L = 3.0, t = 0.000001. The particular values of P

and gw presented in the table were chosen because exact results (4 decimal

places) are available for them (Reference 14) and because they cover a large

range of both pressure gradient and wall temperature. The table shows that

for favorable pressure gradients a Aq of 0.05 gives five-place accuracy and

a an of 0.2, three-place; but the error is larger for unfavorable pressure

gradients (P < 0).

The maximum value of q, that is, %, is an input in the program. The

method of solution (see Sections 6.5 and 6.6) forces the boundary layer to

satisfy the external conditions on q' and * at this height. Boundary-

layer thickness can vary greatly with Mach number, pressure gradient, and wall

temperature, gw" If % is chosen too small, the results will be in error.

Effect of different values of % on two of the similar flows is shown in

Table IV. Values of f'I are shown, but the effect on g; is similar.

Because % can vary greatly with the flow conditions, especially at high

Mach numbers, it is not always possible to select its proper value without

first making a trial run. It must be selected so that the higher derivatives

of f' and g approach zero asymptotically at the outer edge of the boundary

layer. In all the cases that have been calculated, it was found that the

maximum value of r for five-place accuracy was about 9. For favorable

pressure gradient, % can be considerably less for the same accuracy.

65



TABLE III

EFFCT OF STE SIZE IN I ON ACCURACY OF SOLUTION

S=9.0, K =O.5 L=3, = 10- 6

FLOW VALUES OF f' I

P w an = 0.5 I = 0.2 A'= 0.1 A = 0.05 n = 0.02

1.0 1.0 1.270 1.23270 1.232627 1.232591 1.232588

0.33333 0.2 O.540 0.5 3440 0.55690 0.534770 0.534786

-0.0476191 2.0 0.12M 0.1234 0.12391 0.124780 o.124703

-0.13o4348 0.2 - O.129 0.1391 0.1384g o.138226

*Digits underlined may not be significant
Program unable to converge to a solution

TABLE IV

EFFECT OF INPUT r6 ON ACCURACY OF SOLUTION

Af= 0.05, K = 0.5, L = 3, e = 10 - 6

w

P = 1.0 P = -0.0476191
w = 1.0 gw = 2.0

12 1.232588 0.124778

10 1.232588 0.124780

8 1.252588 0.12482

6 1.232591 0.1269

4 1.2328 o.1342

Digits underlined may not be significant
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Selection of % much larger than necessary can affect the accuracy of the

results, for, in the trial solutions of the energy equation, the values of

* and ,' at the outer edge of the boundary layer can grow exponentially.

In cases when % was set too large, values as high as 1010 have been ob-

served. In the procedure of solution, the two trial solutions are added to

meet the outer boundary condition, *(C) = 0 (see equations 6.56 and 6.57).

This process of addition can lead to large roundoff errors in the "correct"

solution of * if the trial values of * are very large. (The computer

program carries only eight significant digits.)

The bound K also affects the accuracy of the results. Its purpose is

described in detail in Section 6.5; briefly, it affects the solution of the

momentum equation in the following way: the correct value of f'' is foundw

by trying different values of f"'. Once three trial solutions have beenw

found such that cp' at T is between the bounds of -K S qI'(TI) 9 K, a

three-point interpolation procedure is then used to determine the solution

that satisfies the outer boundary condition. Effect of the bound on the

solution is shown in Table V for two similar flows.

TABLE V

EFFECT OF THE BOUND K ON ACCURACY OF SOLUTION

LO0.05, =9.0, L = 3, 6 = 10-6

fw

K P = 1.0 P = -0.0476191
%, = 1.o 02.0

0.02 1.232588 0.124780

0.2 1.232588 0.124780

0.5 1.232591 0.124786

1.0 1.2326o 0.12481

2.0 1.23262 0.12482

Digits underlined may not be significant
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Results of a large number of cases show that a K of 0.5 produces values

accurate to five decimal places, providing the Mach number is not so high and

the wall so warm as to give large overshoot. In such extreme cases the

velocity ratio V = 1 + CP' can exceed 1.5 in the boundary layer. In the

example shown in figure 8, V has a maximum value of 1.49. In such cases

K must be chosen larger than the amount of overshoot. But in favorable

pressure gradients care also must be taken that K is not too large, no

more than about 2.0. For it is possible in such cases that though 9' for

low trial solutions at first :rows negatively, the growth can reverze; c?'

then grows positively for large , and the low trial solution can exceed

a high one (see Reference 3). If this happens, the program fails to converge

to an answer.

The input L determines the number of successive solutions of the

energy equation used to calculate fluid properties and the enthalpy profile

(see Section 6.9). Remember that in solving the energy equation, the f.uid

properties are first assumed and the enthalpy distribution is computed.

New fluid properties are determined from the calculated enthalpy and the

energy equation is solved again. This iterative procedure is continued L

times. From the cases studied it has been found that for flows where the

enthalpy changes by a factor of about 10 across the boundary layer an L of

3 produces values of both fluid properties and enthalpy that converge to

at least four decimal places. An L of 4 gives convergence to at least

six decimal places. When the enthalpy change through the boundary layer is

much less, less then three times, an L of 2 gives convergence of the

calculated values to at least four decimal places. The value of L neces-

sary to give convergence of the calculated values to a specified accuracy

depends mostly on the magnitude of the enthalpy change across the boundary

layer and is independent of pressure gradient, Mach number, etc.

In the method of solution, once the energy equation has been solved

corrected fluid properties are used to solve again the momentum equation (see

Section 6.9). This iterative procedure is continued until

(C") -w (Iw')QlI < a (7.7)
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where a is an input and Q is a count of successive calculations of the

momentum equation. Againp as with L, the number of times, Q + 1, that the

momentum equation has to be solved in order to satisfy eq.(7.7), depends

mostly on the enthalpy change across the boundary layer and appears to be

independent of pressure gradient, Mach number, etc. Variation of Q with c

is shown in Table VI.

TABLE VI
NUMB OF SUCCESSIVE CALCULATIONS (Q + i) OF MOMEMM EQUATION

NECESSARY TO SATISFY ACCURACY REQUIREMENT

(P'14- (C"< a

Enthalpy Change

Across =106 a = lO 5  a 10 4  4 10 3

Boundary Layer

Approximately

10 Times 5 3 3 2

3 Times or Less 3 2 1 1

The effect of step length in x on the solution appears to-be identical

to that reported by the authors in References 2 and 3 for the incompressible

boundary layer. The details will not be repeated here; but, briefly, not

only must the size of A x be considered in selecting the spacing in the

x-direction, but also the quantity x/c. The latter appears in the terms

containing the x-derivatives in the following way. From the momentum equation

the term containing the x-derivative of (' is replaced by a finite-difference

term of the form

-? x, x @

AX
x
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As a x approaches zero _' approaches zero in an exact solution; but in

the computer program roundoff errors exist and, furthermore, these errors are

multiplied by the quantity x/A x. Therefore as A x approaches zero the

error in the solution is not necessarily decreased. This type of roundoff

error is observed as A x becomes small in the present method. It does not

occur for values of x/A x less than about 25. The maximum error that has

been observed is one in the fifth significant digit for x/a x %- 25. The

error grows as x/A x becomes larger. Of course, this roundoff error is a

function of the number of significant digitst eight, that are carried in the

computer program and is not inherent in the method of solution. It can be

reduced by using "double precision" routines, that is, sixteen significant

digits would be carried instead of the present eight. In all of the calcu-

lations presented in this report A x was selected so that the quantity

x/A x was less than 25. Therefore it is believed that the results are free

of this type of roundoff error.

In particular cases care in selecting two of the other input quantities

is necessary to prevent erroneous results. If gw is known, two trial values

of g must be input; or if g is known, then two trial values of g.,

must be input. In the method of solution these two trial values are used to

obtain two solutions of the energy equation (see Section 6.6). Then, because

the equation is linear, the correct solution is found by combining the two

solutions to meet the outer boundary conditions. If the trial values at the
wall are far from the correct solution, the trial values of 4 and 4' can

become very large near the outer edge of the boundary layer. This is the

same phenomenon that occurs when . is selected too large, and that is dis-

cussed above. In one example when solving for g which had a correct value

of approximately 0.4, trial values of 0.0 and 1.0 were input. At the

the outer edge of the boundary layer they led to values of * of around

-109 and +10 respectively. When the two solutions were combined, in order

to satisfy the outer boundary condition (see equations 6.56 and 6.57), the

large trial values led to roundoff errors in the second significant digit

of *. This roundoff error can be eliminated by selecting trial values of

&; (or gw) near to the correct value, within one significant digit.

Selection is done by either experience or a trial run. The magnitude of the

roundoff error can be easily seen by inspecting values of # and *' near T.

7C



7.3 Flow on a Flat Plate with Variable Temperature

Charman and Rubesin developed a method for calculatlzg exactly the com-

pressible laminar boundary layer on a flat plate with variable wall tempera-

ture (Reference 15). The method requires that the surface temperature distri-

bution be expressible as a polynomial in surface distance, that the viscosity

varies linearly with temperature through the boundary layer, and that the

Prandtl number be constant. One of the examples presented by Chapan and

Rubesin was calculated by the present method with the same assumptions for

fluid properties. The distribution of surface temperature is given by

T Tad T
wT - - (0.25 - 0.83 x + 0.33 (7.8)
T_-T_= _Tx)e. e e

where Tad/Te = 1 + 0.169 is the wall recovery temperature and Te  is

the temperature at the edge of the boundary layer. Since constant c. is

assumed the wall enthalpy distribution has the same form as the temperature.

The external flow has a Mach number of 3.0. Results of the two calculations

are coupared in figure 9 in the form of

qx ()
- --

versus x. The latter quantity is the parameter used by Chapman and Rubesln.

Greatest disagreement between the two methods is 5 in the fourth significant

digit. Furthermore, this difference is consistent for the whole length of

flow; the values calculated by the present method are (0.4 . 0.1) percent

legs than the values calculated by Chapman and Rubesin. In the present

method inputs were selected in such a way that the calculation was accurate

to five decimal places. In using the method of Chapman and Rubesin the cal-

culation depended on parameters given to four figures in Reference 15.

Therefore the two calculations might be expected to agree to at least four

decimal places. But Chapman and Rubesin do not specifically state that all

four digits presented are significant. The value of recovery factor they

calculated is presented to only three figures, a recovery factor - 0.845.

This affects the values of the other quantities - temperature and heat transfer-

71



calculated by their method. Recovery factor calculated by the present method

for the flow is 0.8475. The ratio of recovery temperature calculated by the

present method to that by Chapa and Rubesin is 1.0018.

7.4 Effect of Fluid-Property Laws on Recovery Factor

Effect of the various fluid-property laws on recovery factor was studied

for flow over a flat plate and flow over a cone at Mach numbers fron 1.0 to

10.0. Recovery factor rf had its usual definition

Ta,=h ad + rfY- (-0
Te e

Relation (7.10) is exact only if cp is constant. Fluid-property laws studied

included: first, a viscosity proportional to temperature and an arbitrary but

constant Prandtl number, and second, the "exact" property laws of Cohen (see

Section 6.3). The assumption of viscosity proportional to temperature in the

boundary layer gives a value of C = pP/Pepe of 1.0, since density is in-

versely proportional to temperature across the boundary layer. Recovery factor

versus Mach number is shown in figure lOa for the various laws. Cohen's re-

lations are not used below a Mach number of 2.0 because they are not valid

below that Mach number for the altitude assumed, 50,000 ft. They are not

valid for h/href < 0.0152, where href is Cohen's reference enthalpy,

2.119 x 108 ft 2 /sec 2 . The assumptions of viscosity proportional to temperature,

C = 1.0, and a constant Prandtl number of 0.72, which are often used in boundary.

layer work, give recovery factors that are within 3.3 percent of those calcu-

lated with the more nearly exact properties. The calculated recovery factors

for a cone are identical to those for the flat plate with indentical boundary

conditions.

Variation of the calculated recovery factors with Prandtl number at the

wall is shown in figure lOb. The approximate relation that is often assumed

in boundary-layer theory

rf - (7.11)

is also shown.
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7.5 Comparison of Present Method with that of Flgge-Lotz

and Blottner

Recently Fltgge-Lotz and Blottner developed an implicit finite-difference

method for calculating the compressible laminar boundary layer (Reference 6).

Fluid-property relations that were used included an arbitrary but constant

Prandtl number and one of two relations for viscosity. Either Sutherland's

viscosity law or a viscosity that varied linearly with temperature was used,

and examples for both are given in Reference 6. Since, as of now, the present

method is programed to use either Cohen's "exact" relation for viscosity or

a linear variation with temperature, results of the two methods can be compared

directly only for the examples in Reference 6 that use the linear viscosity

law. These examples consist of a flat plate at Mach number 3.J with an in-

sulated wall and with a heated wall such that Tw/TMd = 2.0. Because the

boundary conditions are independent of x. the flows can also be calculated

by similar-flow methods. Flffgge-Lotz and Blottner compare their results with

the similar solution of Low (Reference 16). The results of the present method

are compared with the same method.

The shear parameter f' calculated by the present method agrees withw

that calculated by Low's method within the accuracy with which his method can

be used. His method uses parameters presented to only four decimal places.

For the heated plate Low's method gives f' = 0.33205 as compared to

0.332057 obtained by the present method. FlUgge-Lotz and Blottner compare

their results with Low's in graphical form, and it appears that values of

fw" agree to at least four decimal places a short distance downstream of the

start of the calculation. At the start the agreement between the two methods

is not so close. In the method of Flgge-Lotz and Blottner the form of the

equation is singular at x = 0, and the calculation must be started at some

point downstream of x = 0. Furthermore, the initial profile must be specified

at this starting point. FlUgge-Lotz and Blottner used the similar profile of

Low to get started, and they state in Reference 6 "Since the initial profiles

are only accurate to four decimal places, there are initially errors in the

boundary-layer calculations and characteristics. These errors appear to de-

crease as the computations proceed.''
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point downstream of x - 0. Furthermore, the initial profile must be specified
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Low to get started, and they state in Reference 6 "Since the initial profiles

are only accurate to four decimal places, there are initially errors in the

boundary-layer calculations and characteristics. These errors appear to de-

crease as the computations proceed."
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The agreement of heat-transfer values calculated by the present method

with those of Low's similar method is not so good as that for the shear para-

meter. For the heated plate at Mach 3.0, the present method gave a value of

of -0.29416 as compared to -0.29367 obtained from Low's parameters.

Since Low presents his data to four decimal places, better agreement might be

expected. The disagreement may be due to the difference in the recovery fac-

tor calculated and used by Low, rf = 0.8477. and that calculated by the

present method, 0.84746. Fltgge-Lotz and Blottner also compare their heat-

transfer values with Low's values calculated for the same flow. Close obser-

vation of their graphs at a point downstream of the initial x-station appears

to show that their results are around 0.2 percent higher than Low's (see

figures 6(b) and 7(b) of Reference 6). This is. about the sae percentage

difference that appears between the present method and Low's, that is,

Present method g;
= 1.002

Low's I

Velocity and enthalpy profiles as calculated by the three methods - Low,

FlUgge-Lotz and Blottner, and present - agree to three decimal places at the

one station, x = 1.10, where data exist so that such a comparison could be

made. This is within the accuracy with which the profiles are presented in

Reference 6.

7.6 Comparison of Heat Transfer Calculated by the Present

Method with that Measured on a Circular Cylinder

Few experimental data on compressible boundary layers are available for

comparison with the prediction of theories. Exceptions are a few heat-trans-

fer data. Reference 17 presents experimental data on heat transfer measured

on circular cylinders with their axes normal to the flow at several Mach

numbers. Comparison of the measured heat transfer with that calculated by the

present method is shown in figure 11. The external velocity and onset flow

conditions used in the calculation were obtained from Reference 17. The ex-

perimental temperatures were so low that the relations for fluid properties

given by Cohen (see Section 6.3) are invalid. Therefore, the simple assuzp-

tions of constant Prandtl number (0.72) and a viscosity proportional to

temperature through the boundary layer were assumed.
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As discussed by the authors of Reference 17, the magnitude of the experi-

mental error is not known; but it may be as great as the difference between

the calculated and measured results in figure 11. They point out that the

experimental data at M = 4.15 are known to include experimental error not

present at the other Mach numbers, and, furthermore, that the error in

instrumentation tends to increase the indicated heat transfer rearward of 400.

They also state that "for a Z 900 the accuracy of all the data becomes

questionable because of the very small convective heat rates compared with

radiation and other sources of error." To avoid confusion with experimental

points, calculated points are not indicated in the figure, but the step size

was 5o except near the stagnation pointwhere step lengths of 1i were used.

Smaller steps were used here in order to converge on the heat-transfer rate

at the stagnation point. Values calculated are believed to be accurate to

three decimal places. Experimental data were obtained at gw '- 1.0, 0.8,

and 0.7. The calculated curves shown are for g = 0.8, but calculations at

the other two enthalpies were very similar. A gw of 0.70 gives values of

[9./(,d- gw)]/[gw/(gd- 9w)]st&1 that are from 0.7 to 1.2 percent higher

than those shown.

7.7 Boundary Layer in an Axisymmetric Convergent-Divergent

Rocket Nozzle

As an example of internal axisymmetric flow the boundary layer inside

a rocket nozzle was calculated. The flow involves both large pressure

gradients and heat transfer. It is similar to the flow calculated by C. B.

Cohen and E. Reshotko in Reference 18, but an exact comparison between the two

calculations can not be made because there is insufficient information on the

flow properties and the nozzle dimensions of Reference 18. Radius, surface

distance, and the velocity and Mach number at the center of the nozzle are

plotted in figure 12 against the axial distance. These local flow conditions

were obtained by means of simple one-dimensional flow relations. Stagnation

pressure is assumed to be 500 pounds per square inch and stagnation tempera-

ture as 40000R, which leads to a total enthalpy He = 27.246 x 106 ft 2 /sec 2 .

The nozzle wall is assumed cooled to a uniform temperature of 800*R, which

corresponds to an enthalpy ratio of gw = 0.17625.
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Results of the calculation are presented in figure 13. The skin-friction

coefficient cf , defined by equation (6.115), and the ratio of Stanton number

to skin friction coefficient, defined by equations (6.120) and (6.121), are

shown. Calculations denoted by ''exact properties'' were obtained by using

the relations of N.B.Cohen described in Section 6.3. A calculation was also

made by using the simple assumptions of constant Prandtl number and viscosity

proportional to local enthalpy. Because of the high enthalpies involved, a

Prandtl number of 0.78 was chosen. Figure 13 shows that these simple assump-

tions for fluid properties lead to results that seriously overestimate both

skin friction and heat transfer at the higher Mach number. At the lower Mach

numbers, the effect is reversed, that is, the simple assumptions gave lower

skin friction and heat transfer than those calculated for exact properties.

This study and those in previous sections indicate that the exact-property
62 2

relations should be used if the local enthalpy exceeds 4 x 10 ft2/sec

Stagnation-point flow is assumed at the start of the flow (x = 0).

Because ue = 0, here, the skin friction coefficient cf is singular and,

of course, can not be presented at the stagnation point in figure 13. The

shear parameter f" and also the gradient of g at the wall, g , are

finite here and are

f= 0.38084 ; g = 0.16523 for exact properties

wf'w '= 0.73507 ; = 0.58177 for C = 1.0, Pr =0.78

7.8 Boundary Layer on a Spherically Blunted Cone at Mach

Numbers of 3.0 and 9.0

Boundary layers were calculated on a reentry-type body that consists of

a 15* half-angle cone blunted with a spherical nose. The conical and spherical

surfaces join in such a way that there is no discontinuity in body slope. The

velocity distribution outside the boundary layer was calculated by a computer

program that consists of (1) a solution of the blunt-body problem from the

stagnation point to a point past the sonic point and (2) a solution by the

method of characteristics in the supersonic flow region. The method of
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characteristics is started just aft of the sonic point by using local veloci-

ties and pressures given by the blunt-body solution as an initial boundary

condition. Variation of the inviscid velocity and Mach number with axial

distance is shown in figure 14. Surface distance and local radius are also

shown. Though the velocity varies smoothly in going from the blunt-body

solution to the characteristics solution, there is a large change in velocity

gradient, due/dx, just aft of the point where the change in methods occurs,

x = 0.9. This results in large changes in the parameter P = (x/ue)(due/dx)

just aft of this point, which produces large changes in the calculated values,

as will be seen below.

Boundary layers on the body were calculated at the two speeds, M = 3.0

amd 9.0, at three altitudes, 50,000, 100,000 and 250,000 ft., for three body

temperatures. Results for M = 3.0 are shown in figure 15 (a, b, c). Results

are independent of altitude to three decimal places; therefore,only the 50,000-

ft values are shown. The reason that the effect of altitude is found to be

negligible is that there is only a small change in total enthalpy with altitude.

Total enthalpy is given in Table VII for the three altitudes. Also, the

reference velocity at that is used to nondimesionalize the velocity ue is

given. The velocity at is the velocity of sound at free-stream stagnation

conditions. The total enthalpy of about 6.6 x 106 ft /sec 2  at the lower

altitudes corresponds to a total temperature of about 1090eR. The three body

temperatures presented are: gw = 0.357, which gives a body temperature equal

to about the static temperature of the onset flow; gw - 0.458, which gives a

wall temperature equal to about 500 F; and an adiabatic wall, which is calculated

by setting g = 0. Variation of the skin-friction coefficient cf and ratio

of Stanton number to the skin friction coefficient St/cf with surface distance

are shown for the flows when U. is specified. When an adiabatic wall ( = 0)

is specified, cf and 9 are shown. To further investigate the effect of

fluid-property laws on the solution, the flows were calculated twice, once

with the ''exact fluid properties'' of Cohen (Section 6.3), and again with the

simple assumptions of constant Prandtl nunber and a linear viscosity law. It

is seen that the simple assumptions greatly overestimate the skin friction and

heat transfer (figure 15(a, b)) and, in the adiabatic wall case, the surface

temperature (figure 15c). For the results with exact properties the figures

show a "bump" in c. just aft of x = 0.90. This is at the point, mentioned
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in the last paragraph, where the method of calculating the inviscid flow re-

sults in a large gradient in u e . This gradient causes a large variation in

the local enthalpy h in this region, which produces a large variation in

Prandtl number (see figure 2). Even though there is a large change in local

flow conditions it is believed that the calculated values are accurate to three

decimal places, because in accuracy studies where the present method was used

to calculate flows with discontinuities in P, and also in gw  and fw' such

accuracy was obtained downstream of the discontinuity.

Results for M = 9.0, shown in figure 16 (a, b, c), have a variation similar

to those at the lower speed. As was also the case for the flow at Mach number

3.0, altitude has a small effect on the calculated values. A change from

50,000 ft to 250,000 ft causes at most a change of 4 in the third simnificant

figure of the values calculated. Total enthalpy and the reference velocity used

in the calculations are given in Table VII. The total enthalpy of about

4.0 x 107 ft2/sec2 corresponds to a total temperature of about 6700R. Since

some dissociation would occur at this high a temperature, there would be some

change in the fluid properties. But the magnitude of this change and its effect

on the solution are left for a later report. It will be simple to study the

effect of equilibrium dissociation by-means of the present method of solution,

since all that will be necessary is to replace the functions for Prandtl number

given in Section 6.3 by similar functions for an effective Prandtl number that

includes dissociation. Such a Prandtl number is presented in Reference 7. The

three body temperatures in figue 16 are: gw = 0.083124, which gives a wall

temperature of about 560*R or 100*F; gw = 0.40, which gives a wall temperature

of around 2000*R; and the adiabatic wall, which is given by g = 0. Again

the simpler fluid-property laws - those of a viscosity that varies linearly

with temperature and a constant Prandtl number - give results that differ

greatly from those obtained with the "exact properties". Values of St/cf

are indeterminate at the stagnation point, but values of fw' , gw,, and

are finite and are given in Table VIII.
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TABLE VII

ALTITUDE, TOTAL ENTHALPYp AND REFNCE VE.OCITf USED IN

CALCULATION OF FLOWS OVE THE SPHERICALLY BLUNTED CONE

Altitude Static Mach 3 Mach 9

ft Temperature H x10 7 at = u He X 10
-7  at = u

Rftsec ft/sec ft 2 /sec ft/sec

50,000 390.0 0.65523 1620.5 4.03180 4016.5

100,000 392.4 (J.65893 1625.0 4.05386 4027.4

250,000 451.8 0.75894 1743.6 4.66769 4321.5

TABLE VIII

STAGNATION POINT VALUES OF f'. gw' AND FOR THE

SPHERICALLY BLUNTED CONE

M Altitude fi' _g

ft Exact Pr = 0.72 Exact Pr = 0.72 Exact Pr = 0.72
Properties C = 1.0 Properties C = 1.0 Properties C = 1.0

3.0 50,000 1.7989 1.3119 1.0 1.0 0.0 0.0

3.0 50,000 0.9851 0.9828 0.3570* 0.3570* 0.4205 0.4076

3.0 50,000 1.1365 1.0369 0.4580* 0.4558* 0.3878 0.3475

9.0 50,000 0.9261 1.3319 1.0 1.0 0.0 0.0

9.0 50,000 0.3155 0.8275 0.08312" 0.08312* 0.1883 o.5(43
9.0 50,000 0.6091 1.OO60 o.4oo* 0.400* 0.2117 0.3822

9.0 250,000 0.9261 1.3119 1.0 1.0 0.0 0.0
* *

9.0 250,000 0.3185 0.8275 0.08312 o.o8312 o.1854 0.5603

9.0 250,000 0.6113 i.0c60 0.400* 0.400* 0.2162 0.3822

*Input values
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7.9 Transverse Curvature Effect in Axially Symmetric Flow

In all the examples presented so far, the transverse curvature terms have

been neglected. These terms become of importance when the boundary layer has

a thickness of about the same magnitude as the body radius. There are two of

these terms: the first term., which includes T, on the right-hand side of

both the momentum equation (6.35) and the energy equation (6.46) and the term
P+ 1

that contains N = = + R in both equations. The transverse curvature

parameter T is defined by (6.32) and the radius parameter R by (6.33b).

Transverse curvature effects were investigated by Probstein and Elliott,

Reference 19. The study was restricted to similar flow and essentially ex-

panded the stream function f and the enthalpy function g in a power

series in E, where

Ve Cos r 1/2

0 0

8 cos a (7.12)
r

That is,

f(, ) fo(n) + t fl(n) + E2 f2(7 ) ...

-Z fj(n) (7.13)
j=o

and there is a similar function for enthalpy. The expansion parameter was

assumed to be small with respect to unity. Substituting their asymptotic

expansions into the momentum and energy equations, and equating to zero all

terms with the same power in g, Probstein and ELliot obtained a double

infinity of ordinary differential equations. They found all these equations

except the zeroth order momentum equation to be linear, because a Pr = 1.0

and a viscosity proportional to temperature had been assumed. They obtained

solutions of the zeroth- and first-order equations. They forced the equations

to be similar, that is, independent of x, by assuming g to be constant.

As discussed by them, this assumption requires that the boundary-layer thick-

ness be directly proportional to the body radius. They present solutions for
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only two types of bodies - a cone and a cylinder with axes aligned with the

flow. Their assumption of similarity - that 8* varies as the body radius -

is a poor approximation for these two bodies, for in reality the thickness

grows nearly parabolically with x, as

The present method was used to calculate the boundary layer on the sane

two types of bodies. Assumptions on the fluid properties are the same as

those used by Probstein and Elliott. Results are presented in terms of the

parameters used by them,

ro0 71 f ' - (f' ')T = 0 (-4
x (7.it).

w T=0

for the cylinder, and

fit - (fZ')T =0( 
15tan f (7.15)

(f")=

for the cone, where Re = uex/ve ; a is the angle between the normal to sur-

face and the radius, but is also the half angle of the cone here; and the sub-

script T = 0 denotes the solution with no transverse curvature effect. For

the cylinder the radius parameter R is zero, and for the cone it is given

exactly by (6-33b)
x dro

R = - -(6.33b)
i1+ Tw -7-dr

0

since cos a is constant. Calculations for a large range in Reynolds numbers,

up to 107, at Mach numbers from 1.0 to 10.0, wall enthalpy ratios hw/he from

1.0 to 10.0, and, for the case of cone flow, a of from 5* to 20* showed that

the parameters (7.14) and (7.15) asymptotically approached a constant as the

solution proceeded downstream. It was found that the asymptotes depended

mostly only on Mach number and body temperature and were nearly independent

of Reynolds number, body radius, and, in the case of the cone, the cone angle.

Sample solutions are shown in figures 17 and 18 for a cylinder and cone,

respectively. Probstein and Elliott's solutions for the same flows are indi-

cated in the figures and give values of the parameters plotted that are

81



40

eOSTEIN AND ELLIOTT M ETHOD

30C

PO Re/ 2 wV-(fmo
X (f )T=O

005 50 75 100 125

x
Po

Figure 17- Effect of transverse curvature on shear parameter for flow over a circular cylinder
with axis aligned with the flow. M.= 5.0; hv/h.= 1.0; Pr =1.0.
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Figure 18.- Effect of transverse curvature on shear parameter for flow over a cone with axis
aligned with the flow. M. = 5.0; hw/h.= 5.0; Pr = 1.0; a= 100; Re 104/ft.
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independent of x. Because of the similarity requirement assumed by Pr~b-

stein and Elliottl the disagreement between the two methods is not sur-

prising. In the calculations by the present method, solutions were required

to converge to four significant digits.

Effects of Mach number and wall temperature on the asymptotic values of

the shear parameter are shown in figure 19 for the cone. The Probstein-

Elliott values are also shown. Although the values given by the two methods

of solution differ, the effects of Mach number and wall temperature are

similar. Since a Prandtl number of 1.0 is assumed for the flows studied,

Reynolds analogy holds exactly, and therefore the effect of transverse curva-

ture on heat transfer is identical to its effect on wall shear, that is,

O =0 9; (7.16)

w o = 0

As was pointed out by Probstein and Elliott, transverse curvature behaves like

an external favorable pressure gradient, that is, it increases both local shear

and heat transfer and tends to delay both separation and transition.

7.10 Effect of Discontinuities in Surface Temperature and

in Wall Mass Transfer on Wall Shear and Heat Transfer

In Reference 2 the authors investigated solutions of the incompressible

boundary layer in the region where a discontinuity in the pressure gradient

parameter P occurred. The purpose of the investigation was to learn how

rapidly the boundary layer adjusts to local changes in pressure outside the

boundary layer. The answer to this question is of great importance in appli-

cation of local-similarity methods that give approximate solutions of the

boundary-layer equations. In local-similarity methods solutions are obtained

by a step-by-step procedure, in which each x-wise segnent of the flow is

approximated by one of the family of similar flows. The method assumes that

the local boundary-layer profiles are functions of local boundary conditions

only. For the method to be accurate the boundary layer must adjust to the

local boundary conditions very rapidly.
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In the investigation of the incompressible boundary lae in the region

of a discontinuity in P, it was found that this adjustment to local boundary

conditions was surprisingly slow (Reference 2). Study of the same adjust-

ment for compressible flow by means of the present method shows that it is

nearly identical to that found earlier for incompressible flow. Also, the

present method was used to find how rapidly the boundary layer adjusted to

discontinuities both in wall temperature and in mass transfer at the surface

for supersonic flow. These effects are presented in this Section.

First, the effect of discontinuities in wall temperature gw on a flat

plate at Mach number 3.0 are presented. Prandtl number is assumed to be 0.72.

The wall temperature gw is constant forward of x = 1.0 and then abruptly

changes to another value downstream of x = 1.0. Three values of the wall

temperature were studied: bw = had, giving a value of g = 0.90134;

hw = 2 had, giving gw = 1.80268; and hw = hep giving w = 0.35714 . In

figure 20a calculated values of g are shown for the flows when g. is

initially the adiabatic value and then abruptly changes to the higher or

lower traperature downstream of x = 1.0. For comparison, the calculated

values are also shown for the case when the plate is adiabatic for the whole

length of flow. The latter is a similar flow and therefore independent of x.

A positive value of 9; means that heat is being transferred to the surface;

a negative value means that heat is being transferred from the surface to the

air. The figure shows that g; abruptly changes just aft of the discor!-

tinuity in gw and slowly approaches an asymptotic value as the flow proceeds

downstream. This asymptotic value, which is indicated in the figure, is the

same as that which would be obtained by a similar solution using the local

boundary conditions downstream of the discontinuity. It is seen that the cal-

culated value of 9 overshoots the asymptotic value just downstream of the

discontinuity and slowly approaches the value from the opposite side from which

it started. That is, in figure 20a for the case when gw = 0.35714 downstream,

the calculated value of g at first greatly exceeds its asymptotic value and

then approaches it from above as the calculation proceeds downstream. Step

size in x used in the calculation was selected in such a way as to give cal-

culated values accurate to three decimal places downstream of the discontinuity.

Local similarity methods would give a constant value of g; for the whole
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length of flow downstream of the discontinuity, and, furthermore, this value

would be the asymptotic value indicated in the figure.

Similar plots for flows where g is initially 0.35714 and 1.80268

and then abruptly changes to the other two values are shown in figures 20b

and 20c, respectively. The adjustmnent of g; to the local boundary condi-

tions is like that shown in figure 20a. As was the case in the adjustment

of fw" to local changes in P, the adjustment of 4 to the local value of

is surprisingly slow. Since flat-plate flow, P = 0, is assumed for the

flows shown in figure 20 (a, b, and c), the term containing p eP in the

mcnentum equation (6.37) drops out, and the calculated values of f, f', and

f' are independent of gw"

ftthalpy profiles for two of the flows with discontinuity in gw are

shown in figure 21. It is seen that the enthalpy values adjust to the local

boundary conditions more rapidly near the wall than they do at the outer edge

of the boundary layer. Asymptotic profiles for the two flows are also shown.

Discontinuities in mass transfer at the surface were also investigated.

Two external flows were studied. First flat-plate flow similar to that des-

cribed in the previous paragraphs.is assumed: P = 0.0, Me = 3.0, Pr = 0.72.

It is assumed that air is blowing out of the surface forward of x 1.0 in

such a way that fw is equal to a constant. Aft of x = 1.0 the surface

is impermeable. Although there is a discontinuity in the suction velocity vw

the stream function f. is a continuous function since it is an integral of

vw over x (see equation 6.16). Two different blowing quantities are assumed

forward of x = 1.0: fw = -0.5 and -0.1. The resulting variation of fw

downstream of the discontinuity in vw  is shown in figure 22a. Effects of

the mass transfer and its discontinuity on the calculated values of f" and

gw are shown in figures 22b and 22c, respectively, for the case of an in-

sulated plate. It is seen that blowing decreases both f.' and S.

The effect of blowing cold air at the front of a nearly insulated plate

is shown in figure 23. The some blowing quantities used in the previous para-

graph arc assumed (figure 22a). The air blown from the surface is assumed to
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have the same temperature as the free stream, h = he, giving a value of
V

= 0.35714 forward of x = 1.0. Aft of x = 1.0, the surface is solid

and has a temperature close to the adiabatic temperature. Effects of thc

blowing and its discontinuity on g; are shown in figure 23b. For com-

parison values of g; for the case of no blowing (fw = 0) are also plotted.

Since flat-plate flow (P = 0) is assumed, the term containing pe/ in the

momentum equation disappears, and the calculated values of f, f', and f"I
W

are independent of gw" Therefore the variation of f" with x for thisw
case of blowing cold air on a hot plate is the same as that shown in figure

22b for the case of blowing on an insulated plate.

The opposite effect, that of blowing hot air at the front of a cold plate,

is shown in figure 24 . Three different blowing quantities are assumed forward

of x = 1.0: fw = - 0.1 - 0.5, and - 1.0. The first two of these are

identical to those used on the plates described in the two previous paragraphs

and shown in figure 22a. The blowing air is assumed to have a temperature

nearly equal to the adiabatic temperature, g. = 1.0. Downstream of blowing

(x > 1.0) the surface has a temperature equal to the static temperature out-

side the boundary layer. Again the variation of g; with distance is shown.

The effect of blowing on the velocity and enthalpy profiles for this flow is

shown in figure 25. The adjustment of the profiles to the discontinuities in

mass transfer and temperature is typical of that observed for all flows where

such discontinuities occurred.

The effect of blowing air out of the surface at the front of a body is

applicable to some forms of ablation cooling. In practice, when ablation

cooling is used, the body is usually blunt and thus the flow is initially like

that of a stagnation-point flow rather than the flat-plate flow that was

assumed in the preceding paragraphs. Therefore the effect of blowing has also

been studied on a body that is initially blunt. The flow is assumed to be

stagnation-point flow (P = 1.0) for x 9 1.0 and then to change abruptly to

a constant pressure flow (P = 0.0) for x > 1.0. This assumption of an

abrupt change from stagnation-point flow to constant-pressure flow would not

be a bad approximation to the flow over the reentry type body, a spherically

blunted cone, studied in Section 7.8 and shown in figure 14. The mass-trans-

fer distributions are assumed to be the sane as those studied in the flat-
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plate flow. Also the onset flow is the same. Effect of the discontinuities

in P and vv  on an insulated body is shown in figure 26. Variation of

the shear parameter fI with distance is shown in figure 26c and of the
wall enthalpy gw with distance in figure 26d. Note that even though the

pressure gradient parameter P, the suction parameter fw' and the heat-

transfer parameter 8 are constants in the stagnation-point flow region,

x < 1.0, the wall enthalpy, and thus ft', change because of the variation in

ue . The effect of blowing cold air initially out of the blunt body is shown

in figure 27. Aft of the discontinuities in both P and vw, the surface is

assumed to have a temperature equal to the total temperature of the flow.

Adjustment of the velocity and enthalpy profile to the change in P, v , and

gw is shown in figure 28 for one of the mass-transfer distributions of

figure 27.

In conclusion, the study of discontinuities in the boundary conditions -

P, gw, and fw - shows surprisingly slow adjustment of the boundary layer to

these local conditions. It appears that local similarity methods give

erroneous results for flows where rapid variation in the external or wall

boundary condition occurs.

7.11 Concluding Statement

The large number of calculations and their comparison with other methods

and experiment establish the fact that the method is rapid, highly accurate,

and powerful. About 0.25 minutes of ccmputing time on the IBM 7090 computer

are required to calculate the velocity and enthalpy profiles at one station

accurate to four significant digit. Since a typical flow requires from 20

to 30 stations, computer time averages between 5 and 7 minutes for solving a

given problem. The method appears capable of solving any flow problem for

which the boundary-layer equations themselves remain valid. It is now being

extended to handle flows where dissociation (both equilibrium and nonequl-

librium) occurs. Also effects of both catalytic and noncatalytic walls will

be included.

8
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APPEMDIX A

DEVELOPM7T OF THE BOUIDARY-LAYM EQUATIONS FOR COMPRE-S3BLE

LAIKAR FLOW INCLUDING THE EFFECT OF MANSVERSE CURVATURE

In this Anpendix the boundary-layer equations are developed for axially

symetric flow for the coordinate system of Section 6.1. The effects of

transverse curvature are included.

Continuity Equation

The continuity equation is

t + div(p V) = 0(Al)

The first term is of course zero for steady flow.

Before writing (Al) in the xy coordinate system, consider the general

orthogonal coordinates. Let

X, Y, Z, o.* any Cartesian coordinates

a V a2, a3" a* any orthogonal coordinates

Let the elements of length in the direction of increasing ci' 2 and a.

be h,?,. h 2 2, and h 3, respectively, so that

(d)2 = h2(d1)2 + h2(d )2 + h3
2 (d3)2  (A2)

The quantities h1 , h2 , and h3  are defined by

h ( )2 + ( +) +W 2lax5 a l 2 /az \

ax +2 az
4'2 (F2 2

h 3 
2 + +WJ jT
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Now consider the coordinate system of figure 1. It is redrawn in figure All

to show that

d2- dx

where here (p is the azimuthal angle. If the second order effect of longi-

tudinal curvature were to be retained as well as that of transverse curvature,

da1 - dx/(l + ky) where k is the local curvature, that is, the reciprocal

of the local radius of curvature. For most flows of interest in aerodynamics

the effect of longitudinal curvature is usually much smaller that that of

trarsverse curvature, and it will be neglected in the present study. Since

the problem is sxisymmetric, all quantities are independent of q). Now from

(A3)

h1, 2 ( A}

P P

I -

I I

\/

Figure AL- Coordinate system for axially symmetric body.
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From vector analysis and the relation

V-Tu+ v (As)

the continuity equation can be written

d+ v (pV + 1 p (A6)

Momentum Nauation

The Navier-Stokes equation of motion in vector notation is (from page 50

of Howarth, Reference 5):

(V +gradV).P-ra p+ ( + grd (V ra )

-V±+ grad gX curlV-agrad p

- curl curl V V (A7)

In order to apply the boundary-layer assumptions, consider the x and y

components of (A7) separately. The x-vise or 1 component in the orthogonal

coordinate system is:

6+ + u V-TY1

+16u,

where Y is 1 body force.
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Now make the usual order of magnitude analysis of (AS). Let ue, pe end

x be of order unityp that isj, ue pep x - 0(1). Then since

Rx --a-, 11 -o (I

Also since, o )

Similarly, the magnitude of the other caponents of (AB) may be found. They

are siumarized in the table below.

OMDR QUAYT=

22u°(8"2)

o(-1)

au a u a% vo(l) r., u. x. ps -, 0, UT-- S,

v arv a2 v
00) V J R , ME

o(e2 )  v -PI/,

If only terms of order (8) or larger-,that is, terms of order (8), (1), (5"),

(5-2) -are retained, then eq.(AB) reduces to the following equation,

S + u + v Y +a2(A9)

The y or _j component of equation (A7) is
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+ N+ +(W -.1r)

" r +a , 2 aa
;u Y F v '6

If terms of order unity are retained, (AIO) reduces to

pdy

For the flow under consideration there are no body forces and the flow is
steady. The m~nentum equations (A9) and (All) then become

PLu +Vy] =--+r~ (u+

. 6- (Al3)

The latter says that the total change of pressure through the boundary layer
normal to the surface is of order 52 . Therefore it wifl be neglected, and

the partial derivative of pressure with respect to x, p/ x, is replaced

by the total derivative, dp/dx, in eq. (A12).

Ebergy Equation

The basic form of the energy equation for an orthogonal coordinate systan
is given by Howrth, page 55, Reference 5. In his notation

+216r + v + r+1TrXu

+h a 0 F6(g(v) - (4AP)

where h = enthalpy =fcp d

F o dhl iption function = rate of work done by viscous forces
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and by definition

D ( + V • (A15)

k6)-dv(kc grad T) (A16)

The dissipation term in vector coordinates is given by

div grad V 2 2 div Xcl V) - 2 V.d(div v) + (r V) 2 - 2 (dv V)2

(A17)
An order of magnitude analysis as was made above for the manentum equation

gives, if terms of only the highest order are retained, •

=h ahu ah 6Tk ) (A.8)

The last term can be written in terms of enthalpy by the relation

k T =k__ ah k ah . g ah A9
Ty -p T- acp P sy

where Pr is the Prandtl number. Substitution of (A19) in (A18) gives

rah bh ah u &k + ', (au
~~~ FY)~+J~ +~ +F 1 aj[ (A20)

Now if steady flow is assumed and if the momentun equation (A12) is used to

replace the term u t p (A20) may be written

[ (21h)

Now introduce total enthalpy H

12
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aMt substitution in (A21) gives

U + v u =.1 + i u au
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APPMMIX B
COMPtI PROGRAM FOR SOLVING THE BOUNDARY-L EQUATIONS

(IBM 7090 Computer)

Input

1. The constants:

He u:/2hr C1

href a q C2  (Appendix B)

n-MAX ' = pU/- C 3

f" K (Section 6.5) P-MAX (section 6.9)w0
L-MAX (Section 6.9) Q-MAX (Section 6.9)
61 (Appendix B) e2 (Appendix B)

2. The Table:

TABLE 1 A

Page 1
2

n x P R (-Le Pwvw

Page 2

n 9w ; 9; fZ' cos a i p Print
1. 1 0 _

Not all of the notation used here are defined in Section 4.0 PRINCIPAL NOTATION,

but if not1 they are defined when applicable here.
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Ccaputation
1. Determine local value of Pn and Rn if they are not inputs.

(a) If n= 0 P0  and Re are always inputs
(b) If n j 0, calculate using (6.13), (6.14), (6.97), (6.98)

2. Calculate C by (6.26).

3. Set n=O.0-
4. Set Q=O, i=O.

5. Form table of pe/p and C versus T1.

If n - O calculate go

(a) If gw is input, go = gw-(gw-

(b) If g is input, go = g (n-% ) + i
Calculate pep and C using (6.23), (6.24), (6.25) and

fo = n/l%
If n 0, use table of pe/p and C fro n-l station

6.If 0, use values of p/p and C determined from the

last solution of the energy equation.

7. Solve momentum equation.

(a) If n =O, use (6.95)
If n . use (6.37)

If p = 0, use (6.58) for x-wise derivatives

If p = 1, use (6.59) for x-wise derivatives
(b) Find values of (p," to be used for the first try.

If Q -0 and n = 0, then , = fit
IW

0
If Q=O and njO, then (ptt-"w t"

If Q j 0, then (pwtI 9"l -

(c) Calculate momentum equation, testing
(i) If (' > K, stop calculation and store pI

as a high solution
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(2) If (' < -IC and C" <0, stop calculation

and store Cp' as a low solution

(3) If r and
if '(%) < 0, store as low solution

if ( ) > 0, store as high solution

D() Denote solution as ( )i

8. Set i = i + 1 and reenter at C , using:

(a) If wi is high, then cWi' = c"w' -C I

i Wi+l = iP';-C

(b) If cpw" is low, then ='w + C1

9. Repeat procedures ( and D until a ast one high and
one low value of pwi are known. Rater at

10. Reenter at , using:

*±
wl 2

where [ w"]High = lowest high solution

w= highest low solution

311. Repeat procedures G) and (i' until either:
(a) there are three trial solutions extending to r6

within the bounds of - K < (P(Ti) < K
Interpolate by means of (6.43) and (6.44) for solution

that causes 9'(%) = 0
(b) [pt']High -- ']Low < a,. If so, determine the maximum

value of Y common to the last three trial solutions.

Denote this il as q-MAX. Interpolate by means of (6.43)
and (6.44) for solution that causes 0'(.) - 0, treating

TI-MAX as
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12. Compare Q :

(a) If Q - O, enter at F )
(b) If O<Q< . compare ((P') I

(1) if

enter at

(2) If

enter at 0

(c) If Q= Q-MAX, enter at

13. Set L=O.
(a) Determine table of C and Pr

(1) If Q = Op L = 0, n = Op use g0  from step 5 to

determine C and Pr by (6.23), (6.25), (6.27a),

(6.27b), (6.27c)

(2) If Q = O, L =0, n 0, use C and Pr from

n-i station

(3) If Q O, L 0, use C and Pr fran Q-1 solution

(4) If L 0 0, use C and Pr from L-1 solution

14. Solve energy equation.

(a) If n O, use (6.96)

If n 0., use (6.49)
(b) Calculation depends on whether g. or gw is input

If g is input,

(1) Calculate, first using *1 = and - 1.

Denote solution as * 1

(2) If *(il) >0, solve for *20 using ww2 = S1-1-C 2

(3) If *1(n=) < O, solve for *2p using *, - g1 - + C2
w2 1

(4) Determine correct values of * and *' using (6.56),

(6.57a), (6.-57)
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(c) If is input,

(1) Calculate, first using 1  .Denote solution as

(2) If *1(%) > 0, solve for 'p2' using = 91 + C2

'2 1
(,) Iftl <0o, solve for 'p2' usn tw = gl' *C2

(4) Determine correct values of * and *' , using (6.56),

(6 .57a), (6.57b)
15. Calculate values of C and Pr and store as CL and PrL, using

(6.23),(6.25), ( 6 .27a), (6.2Tb), (6.27c).

16. Test L.

(a) If L < L-MAX, set L = L + 1 and enter at (H)
(b) If L = L-MAX, set the tables

CL = CQ

Pr L = Prq

and solve for (p /P) usin 6.24). Set c -

Set Q=Q + . Rter at

17. Denote values of (C (p")', cp, 'I', r, *1 ', pe/p , C, and Pr as

n values, that is, (C qI")' = (C (pI")' etc.

38. Determine values of fn f': f", g and q by (6.36), (6.45).
n n n n

19. Calculate: Y versus I by (6.106), a by (6.107), 0 by (6.1U/),
Cf by (6.116), and St /cf by (6.121).

20. Go to next n-station by setting n = n + 1 and entering at 0
21. Stop calculation when n > n-MAX.
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Print Out

1. Input constants and table.

2. The table

n W1 I g g * f C P r

3. For every station, the table

T f ft fit (C CP)I g gI Y

.. If "print" is indicated in table of input, the following

is printed out for every trial solution:

Station No.

1 Tr r t' C Pr

(P cps I (cq" I) I C Pe/P
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1. Smith$ A. M. 0. and Clutter, D. W.:-Solution of the Incompressible
Linni Boundary Layer Equations. Douglas Aircraft Co. Report No.

zs 4o446, Juy 29, 1961.

2. Smith, A. M. 0. and Clutter, D. W.:-Solution of the Incompressible
Lainar Boundary Layer Equation. Douglas Aircraft Co. Engineering

Paper No. 1525, January 1, 1962.

3. mith, A. M. 0. and Clutter, D. W.:-Solution of Prandtl'a Boundary-

Layer Equations. Douglas Aircraft Co. Engineering Paper No. 1530,

February 2, 1962.
4. Van Dyke, M. :-Second-Order Compressible Boundary-Layer Theory with

Application to Blunt Bodies in Hypersonic Flow. Stanford University

Department of Aeronautical Engineering Report suDaR No. 112, July 1961.
5. Howarth, L. :-Modern Developments in Fluid Dynamics. Vol. 1, Oxford 1953.
6. Flflgge-Lotz, I. and Blottner, F.G.:-Computation of the Compressible

Laminar Boundary-Layer Flow Including Displacement-Thickness Interaction

Using Finite-Difference Methods. Stanford University Division of

Engineering Mechanics Technical Report No. 131, January 1962.

7. Cohen, N. B. :-Correlation Formula and Tables of Density and Some

Transport Properties of Equilibrium Dissociating Air for Use in

Solution of the Boundary-Layer Equations. NASA TN D-194, February 1960.

8. Hartree, D. R. and Womersley, J. R.:- A Method for the Numerical or
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Figure 9.- Heat transfer on a flat plate with variable surface temperature. Mach number 3.0, Pr 0.72.
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Figure 10.-Dependence of recovery factor on fluid-property laws.
(a) Recovery factor versus Mach number.
(b) Recovery factor versus Prandtl number,
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Figure 11.-Comparison of heat transfer calculated by the present method with that
measured In the wind tunnel for a circular cylinder.
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Figure 12.-Variation of surface distance x, body radius r,, u.*/a*, and M,* with axial distance for
the rocket nozzle problem. H. = 27.246 X106 ft2/sec 2; g,,= 0.17625; Pr = 0.78.
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Figure 13.- Results of calculation for the rocket nozzle.
(a) Skin friction. (b) Ratio of Stanton number to skin friction.
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Figure 14.-VariatIon of local velocity, body radius and surface distance with axial distance
for a spherically blunted cone. M. = 3.0 and 9.0.
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Figure 15.- Results of calculations for the spherically blunted cone at Mach number =3.0 and 50,000-ft. altitude.
(a) Skin friction and Stanton number for g,,= 0.357.
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Figure 15.- Continued. (b) Skin friction and Stanton number for g,= 0.400.
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Figure 15.-Concluded. (c) Skin friction and wall enthalpy for gw' = 0,0.
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Figure 16.-Results of calculations for the spherically blunted cone at Mach number = 9.0 and 50,000-ft. altitude.
(a) Skin friction and Stanton number for g,= 0.083124.
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Figure 16.- ContInued. (b) Skin friction and Stanton number for g,,= 0.400.
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Figure 16.-Concluded. (c) Skin friction and wail enthalpy for g'= 0.0.
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Figure 19.- Transverse curvature effect on shear parameter for flow over a cone for Pr =1.0, y = 1.4.
Comparison of present method with first-order effect of Probstein and Elliott.
Pr = 1.0; C = 1.0; a = 100; Re = 104/ft.
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Figure 20:- Effect of discontinuities In g, on the solution of flow over a flat plate. at Mach number =3.0.

Pr =0.72; C =1.0; g,,= gwofor x S 1.0; g = g for x > 1.0. Positive value of g' means
that heat Is being transferred to surface. Negative value means that heat is being transferred
from surface to the air. (a) gwo 0.90134; gWW = 0.35714, 0.90134, and 1.80268.

117



0.2 r IWO.357I4 -

0

-0=.21

-0.6-

-0.8

-1.0

-14

O10203.0 4.0 5.0 6.0

(b)

Figure 20.- Continued. (b) gw= 0.35714; g ,, 0.35714, 0.90134, and 1.80268.
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F igure 20.- Concluded. (c) gw,= 1.80268; gwc = 0.35714, 0.90134, and 1.80268.
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Figure 22-Effect of discontinuities in mass transfer on the solution of flow over an insulated flat plate (g',= 0.0).
M. = 3.0; Pr = 0.72; C = 1.0. Arrows indicate direction of air flow out of surface.
(a) Mass-transfer quantity f,, versus x. (b) Shear parameter f'w, versus x.
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Figure 22.- Concluded. (c) Wall enthalpy g,, versus x.
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Figure 23.- Effect of blowing cold air at the front of a hot flat plate. External conditions and mass-transfer
distributions are the same as shown in figure 22. Also variation of fl, with x is the same.

(a) Wall enthalpy g. versus x. (b) Heat-transfer parameter g' versus x.
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Figure 24.- Effect of blowing hot air at the front of a cold flat plate. External conditions and mass-transfer
distributions are the same as shown In figure 22. Also a variation of f" with x is the same.
(a) Wall enthalpy g, versus x. (b) Heat-transfer parameter g' versus x.
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Figure 26- Effect of blowing at the nose of an Insulated blunt body on the solution downstream.
M. = 3.0; Pr = 0.72; C = 1.0; P = 1.0 for x < 1.0; P = 0.0 for x > 1.0.
Arrows Indicate direction of air flow out of surface. (a) Pressure gradient parameter
P versus x. (b) Mass-transfer distribution, f,, versus x. (c) Shear parameter f, versus x.
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Figure 26.- Concluded. (d) Wall enthalpy, g, versus x.
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Figure 27.- Effect of blowing cold air at the nose of a hot blunt body on the solution downstream.
External flow and mass-transfer distributions are the same as for the flow in figure 26.
(a) Wall enthalpy g, versus x. (b) Shear parameter f, versus x.
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Figure 27.- Concluded. - (c) Heat-transfer parameter g' , versus x.
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130



DISTRIBUTION LIST FOR DOGLAS AIRCRAFT CO. REPORT NO.

LB 31088, CONTRACT NO. NOv 60-0533c

NAVY AIR FORCE

Chief, Bureau of Naval Weapons Commander
Department of the Navy Office of Aerospace Research
Washington 25, D. C. Washington 25, D. C.
Attn: Code RRRE-4

Code RAAD-3 Directorate of Aeromechanics
Code DLI-31 USAF Aeronautical Systems Division

Wright-Patterson Air Force Base, Ohio
Commanding Officer and Director
David Taylor Model Basin Arnold Engineering Development Center
Carderock, Maryland P.O. Box 162
Attn: Aerodynamics Laboratory Tullahoma, Tennessee

Commander
Naval Missile Center ARMY
Point Mugu, California

Office of Ordnance Research
Commander Department of the Army
Naval Ordnance Test Station Duke Station
Inyokern, China Lake, California Durham, North Carolina
Attn: Technical Library

Ballistic Research Laboratory
Commander Aberdeen Proving Ground
Naval Ordnance Test Station Aberdeen, Maryland
Pasadena Annex
Pasadena, California OTHER GOVERNMENT AGENCIES
Attn: Technical Library

Commander
Commander Armed Services Technical Information Agency
Naval Ordnance Laboratory Arlington Hall Station
White Oak, Silver Spring, Maryland Arlington 12, Virginia
Attn: Code HL

Code DA National Aeronautics and Space
Administration

Commander 1512 H Street N.W.
Naval Weapons Laboratory Washington 25, D. C.
Dahlgren, Virginia
Attn: Technical Library Director

National Bureau of Standards
Chief of Naval Research Washington 25, D. C
Department of the Navy Attn: Fluid Mechanics Section
Washington 25, D. C.
Attn: Code 438

Code 461



IDUCATICUAL INSUICTZ INDUSTRIAL CSMIIZATIMS

Guggenheim Aeronautical Laboratory Lima-Temco-Voust-Corporation
California Institute of Technology P.O. Box 1508
Pasadena 4, California Dallas 22, Texas
Attn: Dr. Clark B. Millikan

General ynua es/Convair
Applied Physics Laboratory P.O. Box 1950
Johns Hopkins University San Diego 12, Cnlifornia
P.O. Box 244 - Ht. 1 Attn: Mr. C. W. Frick
Laurel, Maryland
Attn: Technical Reports Office Grumman Aircraft Engineering Corporation

Bethpage, Long Island, New York
Department of Aeronautics Attn: Fluid Mechanics Section
Johns Hopkins University
Baltimore 18, Maryland Lockheed Aircraft Corporation
Attn: Dr. F. H. Clauser Burbank, California

Attn: Mr. L. A. Rodert
Institute for Fluid Mechanics
and Applied Mathemtics McDonnell Aircraft Corporation
University of Maryland St. Louis, Missouri
College Park, Maryland Attn: Mr. G. S. Graff
Attn: Professor J. M Burgers

Norair Division
Massachusetts Institute of Technology Northrop Corporation
Cambridge 39, Massachusetts 1001 East Broadway
Attn: Aerophysics Laboratory Hawthorne, California

Attn: Dr. W. Pfenninger
Defense Research Laboratory
University of Texas North American Aviation, Inc.
P.O. Box 8029 Aerophysics Department
Austin, Texas 12214 Lakewood Boulevard
Attn: Professor M. J. Thompson Downey, California

Attn: Dr. E. R. Van Driest

North American Aviation, Inc.
4300 East 5th Avenue

Columbus, Ohio
Attn: Mr. R. M. Crone

Cornell Aeronautical Laboratory
4455 Genesee St.
Buffalo 21, New York



. II11i I I I
i

'

a all

IiI
lag 1 1 I

OZ Q

.H a , ! a

I tti la
!11bj i iiJ!l t


